Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Identifies Heavy Rainfall in South China Sea's Typhoon Utor

14.08.2013
As Typhoon Utor was exiting the northwestern Philippines, NASA's TRMM satellite passed overhead and detected some heavy rainfall in Utor's thunderstorm "feeder-bands" as it re-strengthened over the South China Sea.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite passed over Utor on August 12, 2013 at 0621 UTC/2:21 a.m. EDT as it was exiting the Philippines into the South China Sea.


NASA's TRMM satellite captured rainfall rates of over 73mm/hr (~2.9 inches) happening in Typhoon Utor on Aug. 12 at 2:21 a.m. EDT as it was exiting the Philippines into the South China Sea.
Image Credit: SSAI/NASA, Hal Pierce

To form a complete picture of rainfall and cloud extent of Utor, TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data were added into a combination Infrared/Visible image from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. TRMM PR found rain falling at a rate of over 73mm/~2.9 inches per hour in well-defined thunderstorm feeder bands extending over the South China Sea. TRMM PR also found that heavy rain in these lines of rain were returning radar reflectivity values greater than 50.5 dBZ.

When Utor was exiting the Philippines yesterday, Aug. 12, the storm's maximum sustained winds had fallen to 85 knots/97.8 mph/157.4 kph. By Aug. 13 at 1500 UTC/11 a.m. EDT the warm waters of the South China Sea had helped strengthen Utor, and maximum sustained winds were near 95 knots/109.3 mph/175.9 kph.

Utor's center is located near 19.5 north and 113.1 east, about 190 nautical miles south-southwestward of Hong Kong. Utor is moving to the west-northwestward at 6 knots/7 mph/11.1 kph. Utor's powerful winds are generating very high, and rough seas. Maximum significant wave heights were reported near 41 feet/12.5 meters.

Although Utor's winds had increased since yesterday, animated enhanced infrared satellite imagery today showed that the convective (rising air that forms the thunderstorms that make up the tropical cyclone) structure of the system has started to weaken, according to the Joint Typhoon Warning Center or JTWC. JTWC noted the convective bands had become shallower and weaker after 5 a.m. EDT today (Aug. 14). Infrared data also showed that the eye had become ragged in nature.

Typhoon Utor is predicted to move toward the west-northwest and make landfall in China tomorrow, Aug. 14 between Hainan Island and Hong Kong. More specifically, the forecast track from the Joint Typhoon Warning Center takes Utor's center somewhere between Zhanjiang and Maoming, Guangdong, China. The two cities are about 75 miles/121 kilometers apart.

The JTWC expects Utor to weaken after landfall and curve to the west-southwest over northern Vietnam, where it will begin to dissipate.

Text credit: Hal Pierce/Rob Gutro
SSAI/NASA Goddard Space Flight Center

Hal Pierce/Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/utor-northwestern-pacific-ocean/

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>