Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Identifies Heavy Rainfall in South China Sea's Typhoon Utor

14.08.2013
As Typhoon Utor was exiting the northwestern Philippines, NASA's TRMM satellite passed overhead and detected some heavy rainfall in Utor's thunderstorm "feeder-bands" as it re-strengthened over the South China Sea.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite passed over Utor on August 12, 2013 at 0621 UTC/2:21 a.m. EDT as it was exiting the Philippines into the South China Sea.


NASA's TRMM satellite captured rainfall rates of over 73mm/hr (~2.9 inches) happening in Typhoon Utor on Aug. 12 at 2:21 a.m. EDT as it was exiting the Philippines into the South China Sea.
Image Credit: SSAI/NASA, Hal Pierce

To form a complete picture of rainfall and cloud extent of Utor, TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data were added into a combination Infrared/Visible image from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. TRMM PR found rain falling at a rate of over 73mm/~2.9 inches per hour in well-defined thunderstorm feeder bands extending over the South China Sea. TRMM PR also found that heavy rain in these lines of rain were returning radar reflectivity values greater than 50.5 dBZ.

When Utor was exiting the Philippines yesterday, Aug. 12, the storm's maximum sustained winds had fallen to 85 knots/97.8 mph/157.4 kph. By Aug. 13 at 1500 UTC/11 a.m. EDT the warm waters of the South China Sea had helped strengthen Utor, and maximum sustained winds were near 95 knots/109.3 mph/175.9 kph.

Utor's center is located near 19.5 north and 113.1 east, about 190 nautical miles south-southwestward of Hong Kong. Utor is moving to the west-northwestward at 6 knots/7 mph/11.1 kph. Utor's powerful winds are generating very high, and rough seas. Maximum significant wave heights were reported near 41 feet/12.5 meters.

Although Utor's winds had increased since yesterday, animated enhanced infrared satellite imagery today showed that the convective (rising air that forms the thunderstorms that make up the tropical cyclone) structure of the system has started to weaken, according to the Joint Typhoon Warning Center or JTWC. JTWC noted the convective bands had become shallower and weaker after 5 a.m. EDT today (Aug. 14). Infrared data also showed that the eye had become ragged in nature.

Typhoon Utor is predicted to move toward the west-northwest and make landfall in China tomorrow, Aug. 14 between Hainan Island and Hong Kong. More specifically, the forecast track from the Joint Typhoon Warning Center takes Utor's center somewhere between Zhanjiang and Maoming, Guangdong, China. The two cities are about 75 miles/121 kilometers apart.

The JTWC expects Utor to weaken after landfall and curve to the west-southwest over northern Vietnam, where it will begin to dissipate.

Text credit: Hal Pierce/Rob Gutro
SSAI/NASA Goddard Space Flight Center

Hal Pierce/Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/utor-northwestern-pacific-ocean/

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>