Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA gets an icy cold wink from Hurricane Jova's eye

Several NASA satellites have been following Hurricane Jova since birth and over the last day, Jova's eye has "winked" at them.

Satellite imagery from NASA's Aqua and Terra satellites have shown that Jova's eye was only sometimes visible and other times appeared cloud covered, making it appear as Jova "winking." Other satellites, such as NOAA's GOES-11 satellite captured Jova's "winks."

The visible image of Hurricane Jova on the left was taken from the MODIS instrument on NASA's Terra satellite on Oct. 10 at 1:40 p.m. EDT. Jova's extreme northeastern clouds are already over western Mexico, and the eye is clearly visible. On the right, a visible image from the GOES-11 satellite on Oct. 11 at 12:45 p.m. EDT shows Jova's eye "closed." Credit: Credit: NASA Goddard/MODIS Rapid Response Team/ NASA-NOAA GOES Project

In a visible image of Hurricane Jova from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite on Oct. 10 at 1:40 p.m. EDT, the eye was clearly visible. A visible image from NOAA's GOES-11 satellite on Oct. 11 at 12:45 p.m. EDT showed Jova's eye "closed" (or cloud-filled). The NASA GOES Project and the MODIS Rapid Response Teams are both located at NASA's Goddard Space Flight Center, and processed those images.

In addition to Jova's wink, the infrared AIRS instrument on NASA's Aqua satellite got a cold stare from Jova's eye. Infrared data measures cloud top temperatures, and NASA AIRS instrument noticed they were as cold as -80 Celsius (-112 Fahrenheit) in the thunderstorms in Jova's eyewall. Those frigid cloud top temperatures indicate there's a tremendous amount of power in the storm. The colder the cloud tops, the higher and stronger they are- and Jova is very powerful.

Today, dangerous Hurricane Jova continues to slowly approach the southwestern coast of Mexico today. At 11 a.m. EDT today, Oct. 11, it was near 17.8 North and 105.6 West. That's about 120 miles (190 km) southwest of Manzanillo, Mexico, and 180 miles (290 km) south of Cabo Corrientes. Jova's maximum sustained winds were near 115 mph (185 kmh). Jova is moving to the north-northeast at 5 mph (7 kmh). The National Hurricane Center expects Jova to speed up a little and turn to the north tonight. That means that the eye of the hurricane will approach the Mexican coast today and make landfall this evening.

Warnings continue to be in effect for Mexico as Jova slowly nears. A Hurricane warning is in effect from Punta San Telmo to Cabo Corrientes. A Tropical Storm Warning is in effect from Lazaro Cardenas to Punta San Telmo and Cabo Corrientes to El Roblito. Residents in the warning areas can expect significant flooding from storm surge and rough seas. Rainfall is forecast between 6 and 12 inches, with isolated totals to 20 inches. Residents should check local forecasts and prepare for this powerful hurricane.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>