Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Global Hawk and Satellites Attend Tropical Storm Nadine's 'Birth'

13.09.2012
Tropical Depression 14 strengthened into Tropical Storm Nadine while NASA's Hurricane Severe Storm Sentinel Mission, or HS3 mission, was in full-swing and NASA's Global Hawk aircraft captured the event. While the Global Hawk was gathering data over the storm, NASA satellites were also analyzing Nadine from space.

NASA's Global Hawk landed back at Wallops Flight Facility, Wallops Island, Va., after spending a full day gathering data from the 14th Atlantic Tropical Depression that strengthened into Tropical Storm Nadine during the morning hours of Sept. 12.


This is NASA's Global Hawk's completed flight path for Sept. 11-12 around Tropical Depression 14 (now Tropical Storm Nadine). The Global Hawk completed the second of six vertical “lawn mower cuts” on Sept. 12 and returned to NASA's Wallops Flight Facility, Va. Credit: NASA

The Global Hawk, one of two associated with the HS3 mission, sought to determine whether hot, dry and dusty air associated with the Saharan air layer was being ingested into the storm. This Saharan air typically crosses westward over the Atlantic Ocean and potentially affects tropical cyclone formation and intensification. During its 26 hour flight around Nadine, the Global Hawk covered more than 1 million square kilometers (386,100 square miles) going back and forth over the storm in what's called a "lawnmower pattern." The Global Hawk captured data using instruments aboard and also dropping sensors called sondes into the storm. The dropsonde system ejected the small sensors tied to parachutes that drift down through the storm measuring winds, temperature and humidity.

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Tropical Storm Nadine on Sept. 12 at 1006 UTC (6:06 a.m. EDT) and captured rainfall rates occurring in the storm. Visible and infrared data were combined from TRMM's Visible and InfraRed Scanner (VIRS) instrument and TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments to create an image of Nadine's rainfall. Most of the tropical storm had light to moderate rainfall, falling at a rate between .78 to 1.57 inches/20 to 40 mm per hour. In the southeastern quadrant TRMM data revealed heavy rain was falling at a rate of 2 inches/50 mm per hour. The TRMM data was processed by the TRMM Team at NASA's Goddard Space Flight Center in Greenbelt, Md. TRMM is managed by both NASA and the Japanese Space Agency, JAXA.

NOAA's GOES-13 satellite provided a visible image of Tropical Storm Nadine at 1445 UTC (10:45 a.m. EDT). The image showed that Nadine was developing a central dense overcast and bands of thunderstorms all around the storm. Like the TRMM image, the GOES image was created at NASA Goddard, but made by the NASA GOES Project.

NASA's Aqua satellite also captured an image of Nadine. The Atmospheric Infrared Sounder (AIRS) instrument aboard Aqua captured an infrared image of Tropical Storm Nadine on Sept. 12 at 0441 UTC (12:41 a.m. EDT) that was created at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The AIRS image revealed that Nadine developed a signature comma shape. The AIRS image also showed that Nadine had a large area of strong thunderstorms surrounding the center of circulation and in a band south of the center, where cloud top temperatures exceeded the -63 Fahrenheit/-52 Celsius threshold, indicating strong thunderstorms with heavy rainfall, confirming the data from NASA's TRMM satellite.

On Sept. 11 at 1500 UTC (11 a.m. EDT), Tropical Storm Nadine had maximum sustained winds near 60 mph (95 kmh). The National Hurricane Center has forecast additional strengthening and expects Nadine to reach hurricane strength some time tonight, Sept. 12, or on Thursday, Sept. 13. Tropical storm force winds extend outward up to 115 miles (185 km) from the center, making Nadine about 230 miles (370 km) in diameter.

The center of Tropical Storm Nadine was located near latitude 19.1 north and longitude 47.6 west, about 940 miles (1,510 kilometers) east-northwest of the Lesser Antilles. Nadine is moving toward the west-northwest near 15 mph (24 kmh) and the National Hurricane Center expects Nadine to turn toward the northwest followed by a turn toward the north-northwest Thursday night. Nadine's estimated minimum central pressure is 997 millibars. Nadine is expected to remain in a favorable (weak) upper-level wind environment for the next couple of days.

The HS3 mission targets the processes that underlie hurricane formation and intensity change. The data collected will help scientists decipher the relative roles of the large-scale environment and internal storm processes that shape these systems.

HS3 is supported by several NASA centers including Wallops; Goddard; Dryden; Ames Research Center, Moffett Field, Calif.; Marshall Space Flight Center, Huntsville, Ala.; and the Jet Propulsion Laboratory, Pasadena, Calif. HS3 also has collaborations with partners from government agencies and academia.

HS3 is an Earth Venture mission funded by NASA's Science Mission Directorate in Washington. Earth Venture missions are managed by NASA's Earth System Science Pathfinder Program at the agency's Langley Research Center in Hampton, Va. The HS3 mission is managed by the Earth Science Project Office at NASA's Ames Research Center.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012-nadine.html

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>