Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA finds powerful storms in quickly intensifying Tropical Storm Gil

01.08.2013
No sooner had Tropical Storm Flossie dissipated then another tropical cyclone called Tropical Depression 7E formed yesterday, July 30, in the eastern Pacific Ocean.

NASA's TRMM satellite saw "hot towers" in the storm's center early on July 31, that indicated it would likely strengthen, and it became Tropical Storm Gil hours later.


NASA's TRMM satellite traveled above intensifying Tropical Storm Gil on July 31 at 12:55 a.m. EDT. The TRMM satellite pass showed that Gil was already very well organized with intense bands of rain wrapping around the center with rainfall over 5.2 inches per hour.

Credit: NASA/SSAI, Hal Pierce

NASA and the Japan Space Agency's Tropical Rainfall Measuring Mission or TRMM satellite traveled above intensifying tropical storm Gil on July 31, 2013 at 0455 UTC or 12:55 a.m. EDT. The TRMM satellite pass showed that Gil was already very well organized with intense bands of rain wrapping around Gil's future eye.

TRMM's Precipitation Radar (PR) instrument found powerful storms near the center of Gil's circulation dropping rain at the rate of over 131 mm (~5.2 inches) per hour. Those powerful storms were "hot towers." A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere.

It extends approximately nine miles (14.5 km) high in the tropics. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower.

On Wednesday, July 31 at 1500 UTC/11 a.m. EDT the center of Tropical Storm Gil was located near latitude 13.6 north and longitude 119.9 west, about 920 miles/1,475 km southwest of the southern tip of Baja California, Mexico. Maximum sustained winds were near 60 mph (95 kph). Gil was moving to the west-northwest at 14 mph (22 kph) and had a minimum central pressure of 1,000 millibars.

Tropical storm Gil is predicted by the National Hurricane Center or NHC to move toward the west-northwest and become a minimal hurricane with winds of 75 knots (~86 mph) by August 1.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>