Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA gets an eyeful from major Cyclone Narelle affecting Western Australia

14.01.2013
Tropical Cyclone Narelle "opened" its eye while moving along the coast of Western Australia and NASA's Terra satellite captured a clear image of the well-formed storm center. Narelle is now a major cyclone on the Saffir-Simpson Scale.

NASA's Terra Satellite Gets an Eyeful


NASA's Tropical Rainfall Measuring Mission (TRMM) satellite captured rainfall rates in Major Cyclone Narelle on Jan. 11 at 0654 UTC (1:54 a.m. EST). The heaviest rainfall was occurring at a rate of 2 inches (50 mm) per hour (in red) and stretched from north to west of the center of circulation.

Credit: NASA/SSAI Hal Pierce

When Terra passed over Narelle on Jan. 11 at 0245 UTC the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible image of the storm that clearly showed an eye had formed. Satellite imagery indicated that Narelle's eye was approximately 15 nautical miles (17.2 miles/27.8 km) wide. Satellite imagery also showed that Narelle had become more symmetrical and bands of thunderstorms had become more tightly wrapped into the center since Jan. 10.

Narelle Now a Major Cyclone

On Jan. 11 at 1500 UTC (10 a.m. EST), Tropical Cyclone Narelle's maximum sustained winds had increased to 115 knots (132.3 mph/213 kph), just as predicted by the Joint Typhoon Warning Center (JTWC). Narelle is now a major cyclone and a Category 4 hurricane on the Saffir-Simpson Scale. JTWC forecasters expect Narelle has now reached peak intensity and will begin to weaken hereafter as it moves parallel to the coast of Western Australia.

Narelle was located about 255 nautical miles (293.4 miles/472.3 km) north-northwest of Learmonth, Australia, near 18.3 south latitude and 112.6 east longitude. Narelle was moving to the southwest at 8 knots (9.2 mph/14.8 kph). Narelle is moving along the northwestern edge of a sub-tropical ridge (elongated area) of high pressure that is centered over Western Australia. The JTWC forecast noted that Narelle is expected to round the western edge of this ridge over the next three days before it recurves southeastward. By Jan. 14, the JTWC expects the system will become a cold core low pressure system as it moves over cooler waters and encounters increasing vertical wind shear.

NASA Satellite Sees Narelle's Heavy Rainfall

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite captured rainfall rates in Major Cyclone Narelle on Jan. 11 at 0654 UTC (1:54 a.m. EST). The heaviest rainfall was occurring at a rate of 2 inches (50 mm) per hour and stretched from north to west of the center of circulation.

Warnings and Watches Posted

Until that time, however, warnings and watches are posted along the coastal areas of Western Australia. On Jan. 11, a Cyclone Warning was in effect for coastal areas from Mardie to Cape Cuvier. A Cyclone Watch is in effect for coastal areas from Cape Cuvier to Denham. A Blue Alert is effect for coastal and island communities from Mardie to Coral Bay including Onslow, Exmouth.

At 11 a.m. EST (1600 UTC) on Jan. 11, Onslow was reporting thunderstorms and sustained winds from the east-northeast. Onslow is a coastal town in the Pilbara region of Western Australia, located 1,386 kilometers (861 miles) north of Perth. Thunderstorms are expected to continue in the Pilbara region through Sunday, Jan. 13 as Narelle's center passes by while staying off shore. Onslow, Exmouth and other towns and cities in the Pilbara region are expected to clear by Monday, Jan. 14 as Narelle moves away.

For updates on warnings and watches, visit the Australian Bureau of Meteorology website: http://www.bom.gov.au/. The latest forecast from the JTWC (as of Jan. 11) keeps the center of Narelle over open water and never making landfall in any part of Western Australia. Narelle is expected to pass the southwestern tip of Australia sometime on Jan. 16 and move in a southeasterly direction over the Southern Indian Ocean where it will dissipate.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.eurekalert.org/pub_releases/2013-01/nsfc-nga011113.php

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>