Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA experiment stirs up hope for forecasting deadliest cyclones

15.04.2009
NASA satellite data and a new modeling approach could improve weather forecasting and save more lives when future cyclones develop.

About 15 percent of the world's tropical cyclones occur in the northern Indian Ocean, but because of high population densities along low-lying coastlines, the storms have caused nearly 80 percent of cyclone-related deaths around the world. Incomplete atmospheric data for the Bay of Bengal and Arabian Sea make it difficult for regional forecasters to provide enough warning for mass evacuations.

In the wake of last year's Cyclone Nargis -- one of the most catastrophic cyclones on record -- a team of NASA researchers re-examined the storm as a test case for a new data integration and mathematical modeling approach. They compiled satellite data from the days leading up to the May 2 landfall of the storm and successfully "hindcasted" Nargis' path and landfall in Burma.

"Hindcasting" means that the modelers plotted the precise course of the storm. In addition, the retrospective results showed how forecasters might now be able to produce multi-day advance warnings in the Indian Ocean and improve advance forecasts in other parts of the world. Results from their study were published March 26 in Geophysical Research Letters.

"There is no event in nature that causes a greater loss of life than Northern Indian Ocean cyclones, so we have a strong motivation to improve advance warnings," said the study's lead author, Oreste Reale, an atmospheric modeler with the Goddard Earth Sciences and Technology Center, a partnership between NASA and the University of Maryland-Baltimore County.

In late April 2008, weather forecasters tracking cyclone Nargis initially predicted the storm would make landfall in Bangladesh. But the storm veered unexpectedly to the east and intensified from a category 1 storm to a category 4 in just 24 hours. When it made landfall in Burma (Myanmar) on May 2, the storm and its surge killed more than 135,000 people, displaced tens of thousands, and destroyed about $12 billion in property.

In the months that followed, Reale and his U.S.-based team tested the NASA-created Data Assimilation and Forecasting System known as GEOS-5 and its NASA/NOAA-created analysis technique using data from the days leading up to Nargis because the storm was particularly fatal and highly characteristic of cyclones in the northern Indian Ocean.

Cyclones in the Bay of Bengal – stretching from the southern tip of India to Thailand – are particularly difficult to analyze because of "blind spots" in available atmospheric data for individual storms, as well as the small dimensions of the Bay, which ensure that storms do not have much time to develop or circulate. In most instances, regionally strong wind shear suppresses cyclone development.

But when tropical cyclones do form, flooding waves and storm surges can quickly reach the narrow basin's shores. And that unusual wind shear, which is fueled by large temperature contrasts between sea and land, can also lead to erratic storm tracks. Forecasting is also made particularly difficult by the "blind spots," Reale noted. Land-based weather stations monitor the edges of the bay, but they cannot see much when a storm is brewing several hundred miles from the coastline.

Forecasters from the India Meteorological Department and the U.S. Navy's Joint Typhoon Warning Center lack access to the fleet of "hurricane hunting" airplanes that fly through Atlantic storms. They have to rely on remote satellite measurements that can only assess atmospheric and ocean temperatures under "clear-sky," or cloudless, conditions -- not exactly common in the midst of a cyclone.

In their modeling experiment, Reale's team detected and tracked Nargis' path by employing novel 3-dimensional satellite imagery and atmospheric profiles from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite to see into the heart of the storm.

AIRS has become increasingly important to weather forecasting because of its ability to show changes in atmospheric temperature and moisture at varying altitudes. Until recently, many weather modelers were only using AIRS data from cloud-free skies.

In 2007, atmospheric scientist Joel Susskind of NASA Goddard Space Flight Center, Greenbelt, Md., successfully demonstrated through a technique developed by NASA research scientist Moustafa Chahine that accurate atmospheric temperatures could be obtained using real (versus hypothetical data in a 2003 Susskind study) AIRS partly-cloudy data. Reale's team used the temperature data products from Susskind's work to run the NASA model with the added information from partially-cloudy areas of sky that traditionally got left out.

AIRS cloudy-sky data can now be integrated into what are called shared data assimilation systems, which combine millions of data points from Earth-observing satellites, instrumented ocean buoys, ground-based sensors, aircraft-based instruments, and man-on-the-scene observations. Data assimilation transforms the data into digital local maps that models can "read" to produce either hindcasts or advance projections of future weather conditions.

Lau, chief of Goddard's Laboratory for Atmospheres, believes that regional forecasting agencies monitoring the region can readily access AIRS' data daily and optimize forecasts for cyclones in the Indian Ocean. According to Lau, the same technique can be useful to forecasts of hurricanes in the Atlantic and typhoons in the western Pacific, particularly when the storm is formed over open oceans out of flight range of hurricane-hunting airplanes.

"With this approach, we can now better define cyclones at the early stages and track them in the models to know what populations may be most at risk," explained Reale. "And every 12 hours we gain in these forecasts means a gain in our chances to reduce loss of life."

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/deadly_cyclone.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>