Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA data show Arctic saw fastest August sea ice retreat on record

30.09.2008
Following a record-breaking season of arctic sea ice decline in 2007, NASA scientists have kept a close watch on the 2008 melt season. Although the melt season did not break the record for ice loss, NASA data are showing that for a four-week period in August 2008, sea ice melted faster during that period than ever before.

Each year at the end of summer, sea ice in the Arctic melts to reach its annual minimum. Ice that remains, or "perennial ice," has survived from year to year and contains old, thick ice. The area of arctic sea ice, including perennial and seasonal ice, has taken a hit in past years as melt has accelerated. Researchers believe that if the rate of decline continues, all arctic sea ice could be gone within the century.

"I was not expecting that ice cover at the end of summer this year would be as bad as 2007 because winter ice cover was almost normal," said Joey Comiso of NASA's Goddard Space Flight Center in Greenbelt, Md. "We saw a lot of cooling in the Arctic that we believe was associated with La Niña. Sea ice in Canada had recovered and even expanded in the Bering Sea and Baffin Bay. Overall, sea ice recovered to almost average levels. That was a good sign that this year might not be as bad as last year."

The 2008 sea ice minimum was second to 2007 for the record-lowest extent of sea ice, according to a joint announcement Sept. 16 by NASA and the University of Colorado's National Snow and Ice Data Center (NSIDC) in Boulder, Colo. As of Sept. 12, 2008, the ice extent was 1.74 million square miles. That's 0.86 million square miles below the average minimum extent recorded from 1979 to 2000, according to NSIDC.

Contributing to the near-record sea ice minimum in 2008 was a month-long period in the summer that saw the fastest-ever rate of seasonal retreat during that period. From August 1 to August 31, NASA data show that arctic sea ice extent declined at a rate of 32,700 square miles per day, compared to a rate of about 24,400 square miles per day in August 2007. Since measurements began, the arctic sea ice extent has declined at an average rate of 19,700 miles per day at the point when the extent reaches its annual minimum.

Observations of changes to sea ice over time are possible due to a 30-year record of data from NASA and other agency satellites, including Nimbus-7, Aqua, Terra and the Ice, Cloud, and land Elevation Satellite (ICESat).

Researchers say that the recent seasonal acceleration could be in part due to conditioning going on in the Arctic. For example, research by Jennifer Kay of the National Center for Atmospheric Research in Boulder, Colo., and colleagues reported this April in Geophysical Research Letters that reduced cloud cover in 2007 allowed more sunlight to reach Earth, contributing to a measureable amount of sea ice melt at the surface. Reduced cloud cover also contributed to warmer ocean surface temperatures that led to melting of the ice from below.

"Based on what we've learned over the last 30 years, we know that the perennial ice cover is now in trouble," Comiso said. "You need more than just one winter of cooling for the ice to recover to the average extent observed since the measurements began. But the trend is going the other way. A warming Arctic causes the surface water to get warmer, which delays the onset of freeze up in the winter and leads to a shorter period of ice growth. Without the chance to thicken, sea ice becomes thinner and more vulnerable to continued melt."

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2008/sea_ice_min.html

Further reports about: Arctic Arctic melts Arctic sea ice NASA NSIDC SEA crystalline melt season perennial ice sea ice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>