Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA completes critical design review of Landsat data continuity mission

02.06.2010
The Landsat Data Continuity Mission (LDCM) reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR).

From May 25-27, an independent review board chaired by Steve Jurczyk, Deputy Director at NASA's Langley Research Center, Hampton, Va., met at NASA's Goddard Space Flight Center in Greenbelt, Md. to conduct the review. The CDR certifies that the maturity of the LDCM design is appropriate to support proceeding with full-scale fabrication, assembly, integration, and test of the mission elements leading to observatory integration and test.

"This review highlighted the collective efforts of a dedicated NASA, U.S. Geological Survey, and industry team working diligently towards the development, launch, and operation of the LDCM," said Bill Ochs, LDCM project manager.

LDCM NASA and industry personnel addressed a variety of topics, including the LDCM spacecraft and its instrument payload, system-level test plans for flight hardware and software, systems engineering, mission assurance, the ground system, and science.

NASA plans to launch LDCM in December 2012 as the follow-on to Landsat-5, launched in 1984, and Landsat-7, launched in 1999. Both satellites continue to supply images and data, but they are operating beyond their design lives. As with preceding Landsat missions, the U.S. Geological Survey will operate LDCM and maintain its data archive once it reaches orbit and begins operational observations. LDCM will extend Landsat's unparalleled record of Earth's changing landscapes.

"We provide data critical to observing dramatic ongoing changes to the global land surface and to understanding the impact of land use change on climate, food and fiber production, water resources, national security, and many other important societal issues," said David Hair, project manager, U.S. Geological Survey, Sioux Falls, S.D.

LDCM will carry evolutionary technology that will improve performance and reliability of the mission," said Jim Irons, LDCM NASA project scientist at Goddard.

The LDCM spacecraft (provided by Orbital Sciences Corp., Gilbert, Ariz) will carry two instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI, now being developed by Ball Aerospace & Technologies Corp. will capture images for nine spectral bands in the shortwave portion of the spectrum (visible, near infrared, and shortwave infrared). The Goddard-built TIRS will coincidently collect data for two longwave (thermal) spectral bands. The LDCM ground system will merge the data from both sensors into a single multispectral image product. These data products will be available for free to the general public from the USGS enabling a broad scope of scientific research and land management applications.

For more than 30 years, Landsat satellites have collected data of Earth's continental surfaces to support global change research and applications. This data constitutes the longest continuous record of the Earth's surface as seen from space.

NASA's Goddard Space Flight Center procures and manages the acquisition of the LDCM in partnership with the Department of the Interior's U.S. Geological Survey. NASA will turn over management of the LDCM satellite to the USGS after launch and on-orbit checkout.

For more information about LDCM, visit:
http://ldcm.nasa.gov/

Sarah Dewitt | EurekAlert!
Further information:
http://www.nasa.gov
http://ldcm.nasa.gov/

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>