Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA catches Tropical Depression Kajiki over central Philippines

03.02.2014
Tropical Storm Kajiki developed from the second tropical depression of the Northwestern Pacific Ocean season and quickly moved over the central Philippines. NASA's Aqua satellite passed overhead and captured infrared data on the storm as it drops more rainfall on an already soggy area.

The Philippines have been battered by moderate to heavy rainfall over the last couple of months, and newborn Tropical Depression Kajiki, known locally in the Philippines as "Basyang" is adding to it.


The AIRS instrument aboard NASA's Aqua satellite captured cloud top temperatures with infrared data on Tropical Depression Kajiki on Jan. 31 at 04:41 UTC, showing powerful storms (purple).

Credit: NASA JPL, Ed Olsen

At 11 a.m. EST on Friday, January 31, the airport in Leyete, Visayas, (central) Philippines reported rain with north winds sustained at 16 mph and rains from Kajiki are expected to continue on Feb. 1 as the storm continues moving west and away from Leyete.

The Philippine Atmospheric, Geophysical and Astronomical Services Administration or PAGASA has put into effect Warning Signals #1 and #2 for various areas in the Philippines.

Public Storm Warning Signal #2 is in effect in Luzon, Visayas and Mindanao. That warning calls for potential impacts of winds of 61 to 100 kph within 24 hours. Locations in the warning area include Northern Palawan, the Calamian Group of islands Aklan, Antique, Capiz, Iloilo, Guimaras, Negros, Oriental Negros, Occidental Siquijor, Cebu, Camotes Island, Bohol, Leyte, Southern Leyte, Biliran Province, Samar and Eastern Samar, Camiguin, Dinagat Province, Surigao del Norte inclunding Siargao Island, the northern part of Surigao del Sur and northern part of Agusan del Norte.

Public Storm Warning Signal #1 calls for winds between 30 and 60 kph within 36 hours. That warning is in effect for the rest of Palawan, Occidental Mindoro, Oriental Mindoro, Romblon, Masbate and Ticao Island, Northern Samar, Misamis Oriental, Misamis Occidental, rest of Agusan del Norte, rest of Surigao del Sur, Agusan del Sur, Northern part of Bukidnon, Lanao del Norte and Zamboanga del Norte.

The AIRS or Atmospheric Infrared Sounder instrument aboard NASA's Aqua satellite captured cloud top temperatures with infrared data on Tropical Depression Kajiki on Jan. 31 at 04:41 UTC, showing powerful storms around the center and western quadrants of the storm. At the time Aqua flew overhead, the western side of Kajiki was already affecting the Visayas and Mindanao regions (central and southern) of the Philippines, bringing moderate to heavy rainfall. Cloud top temperatures in those thunderstorms were at least -63F/-52C, indicating high cloud tops and strong uplift in those storms, with heavy rainfall potential.

On January 31 at 1500 UTC/10 a.m. EST, Kajiki's maximum sustained winds were near 30 knots/34.5 mph/55.5 kph. The depression was located near 9.8 north latitude and 126.1 east longitude, about 458 nautical miles/ 527.1 miles/848.2 km southeast of Manila, Philippines. Kajiki is moving to the west at 14 knots/16.1 mph/25.9 kph and is expected to track over northern Palawan on February 1 as it continues moving into the South China Sea.

Forecasters at the Joint Typhoon Warning Center expect Kajiki to dissipate over the South China Sea in several days as a result of increasing vertical wind shear and decreasing sea surface temperatures.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>