Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA captures very heavy rain in Typhoon Fanapi and 2 landfalls

21.09.2010
Taiwan experienced a landfall and a soaking from Typhoon Fanapi, and NASA and JAXA's TRMM satellite noted a large area of very heavy rain in the system before it made landfall this weekend. NASA's Aqua and Terra satellites also captured impressive visible images of Fanapi just before the Taiwan landfall, and as it was making landfall in eastern China very early today.

The Tropical Rainfall Measuring Mission satellite known as TRMM captured an image of Typhoon Fanapi's rainfall on Sept. 18 at 0653 UTC (2:53 a.m. EDT) after the typhoon had intensified to 105 knots (~121 mph). TRMM rainfall data showed heavy rain, falling at a rate greater than 2 inches per hour, circling the Fanapi's eye, except in the north of the circulation. Most rainfall outside of the center was falling moderately.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flies on both NASA's Aqua and Terra satellites and provides high resolution images of tropical cyclones, fires, ice and various other areas on Earth. This past weekend, both satellites were flying over the Pacific Northwest Ocean where Typhoon Fanapi was making landfall twice, in Taiwan and China.

On Sept. 18 at 220 UTC NASA's Terra satellite captured Typhoon Fanapi approaching Taiwan. Two days later, today, Sept. 20, the MODIS instrument on NASA's Aqua satellite captured Typhoon Fanapi making landfall in China at 05:15 UTC (1:15 a.m. EDT).

Just before Fanapi made landfall, NASA's Aqua satellite captured an infrared look at the cold cloud tops of the storm. The infrared image of Typhoon Fanapi from the Atmospheric Infrared Sounder (AIRS) instrument aboard Aqua showed that the strongest convection, strongest thunderstorms and heaviest rainfall on Sept. 20 at 05:11 UTC (1:11 a.m. EDT) were still over the South China Sea and had not yet moved inland. Since that time, the heavy rainfall has moved inland.

After Typhoon Fanapi made landfall earlier today it weakened quickly. By 0900 UTC (5 a.m. EDT) Fanapi had already weakened to a tropical storm with maximum sustained winds near 56 mph. Fanapi made landfall more than 100 miles north of Hong Kong and continues to move inland in a westerly direction. The Joint Typhoon Warning Center placed the storm's center about 125 miles northeast of Hong Kong near 23.8 North latitude and 115.2 East longitude. Fanapi is expected to dissipate sometime on Tuesday, Sept. 21.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Aqua satellite EDT Fanapi MODIS data NASA TRMM satellite Typhoon UTC heavy rain tropical cyclone

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>