Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA analyzes twin hurricanes in the eastern Pacific

10.07.2012
There are two hurricanes in the Eastern Pacific today, Daniel and Emilia.

NASA's TRMM satellite passed over both storms in pinpointed the intensity of the rainfall within each storm, indicative of their power. Emilia is dropping rain at a greater rate than Daniel according to satellite data.


TRMM's Precipitation Radar data show a 3-D view of Daniel (looking from the west). This view shows that very little rainfall was present in the western side. This image also shows that most of Daniel's structure was at lower levels. A few of the most powerful storms in the eastern side of Daniel's eye wall reached to heights of about 11 km (~6.8 miles). Credit: SSAI/NASA, Hal Pierce

Tropical storm Daniel strengthened and became the third hurricane over the weekend, and today, Monday, July 9, Tropical Storm Emilia strengthened into the fourth hurricane of the season. Tropical storm Emilia formed on July 7 as tropical depression 5E and became a tropical storm on July 8. On July 9, Emilia is trailing Daniel by 645 miles in the eastern Pacific, as both storms continue to move away from land.

The Tropical Rainfall Measuring Mission (TRMM) satellite recently saw both tropical cyclones. TRMM flew above hurricane Daniel on July 8, 2012 at 0019 UTC (July 7, 2012 5:19 p.m. PDT) and over Emilia when it was a tropical storm on July 8, 2012 at 0837 UTC (1:37 a.m. PDT). Rainfall data collected with TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments was overlaid on enhanced infrared and visible images from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. to show the intensity of the rain falling within each storm.

TRMM noticed only light-to-moderate rainfall happening within Daniel, as the hurricane continues to weaken. Light-to-moderate rainfall means rain is falling between 20 and 40 millimeters (.78 to 1.57 inches) per hour.

When TRMM passed over Tropical Storm Emilia on July 8, before she became a hurricane, data showed various areas of heavy rainfall in bands of thunderstorms along the northwestern, north, and eastern quadrants, feeding into the center. The heavy rain was falling at a rate of more than 2 inches/50 mm per hour. Surrounding the areas of heavy rain were large areas of light-to-moderate rainfall between 20 and 40 millimeters (.78 to 1.57 inches) per hour.

NASA's Terra satellite also passed over both storms, providing a clear, visible image of the cloud cover and extent on July 8. At that time, compact Daniel had a visible eye, while Emilia did not, and was still getting organized.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Terra satellite captured a visible image of Hurricane Daniel in the eastern Pacific on July 8, 2012 at 1920 UTC 3:20 p.m. EDT that showed the tight circulation of the storm, and a small cloud-filled eye.

On July 9, Hurricane Daniel had maximum sustained winds near 85 mph (140 kmh). The center of Daniel was about 1355 miles (2185 km) west-southwest of the southern tip of Baja California, near latitude 15.3 north and longitude 129.1 west. The National Hurricane Center reports that "Daniel is moving toward the west near 15 mph (24 kmh) and this general motion with a slight increase in forward speed is expected during the next couple of days. Slow weakening is forecast during the next 48 hours."

Hurricane-force winds only extend out 25 miles (35 km) from the center, and tropical storm-force winds extend out up to 115 miles (185 km), making Daniel about 230 miles in diameter.

NASA's Terra satellite captured a visible image of Emilia when it was a tropical storm off the western coast of Mexico on July 8, 2012 at 1745 UTC 1:45 p.m. EDT. The storm appeared comma-shaped, but there was no visible eye in the center of circulation.

Emilia underwent rapid intensification today, July 9, from a tropical storm in the morning hours (Pacific Daylight Time/local time) into a category two hurricane. Emilia's maximum sustained winds were near 100 mph (160 kmh) and the National Hurricane Center noted that she could become a major hurricane (Category Three) later today. Emilia was located about 710 miles (1145 km) south of the southern tip of Baja California. Emilia is moving at 12 mph (19 kmh) to the west-northwest.

Just like Daniel, Emilia's hurricane force winds extend outward up to 25 miles (35 km) from the center of circulation, but Emilia's tropical-storm-force winds are much smaller in area, extending to 80 miles (130 km). Size doesn't matter here, though, because Emilia is expected to become a major hurricane in the next day, while Daniel weakens.

5 Images and captions: http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Emilia.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>