Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA analyzes twin hurricanes in the eastern Pacific

There are two hurricanes in the Eastern Pacific today, Daniel and Emilia.

NASA's TRMM satellite passed over both storms in pinpointed the intensity of the rainfall within each storm, indicative of their power. Emilia is dropping rain at a greater rate than Daniel according to satellite data.

TRMM's Precipitation Radar data show a 3-D view of Daniel (looking from the west). This view shows that very little rainfall was present in the western side. This image also shows that most of Daniel's structure was at lower levels. A few of the most powerful storms in the eastern side of Daniel's eye wall reached to heights of about 11 km (~6.8 miles). Credit: SSAI/NASA, Hal Pierce

Tropical storm Daniel strengthened and became the third hurricane over the weekend, and today, Monday, July 9, Tropical Storm Emilia strengthened into the fourth hurricane of the season. Tropical storm Emilia formed on July 7 as tropical depression 5E and became a tropical storm on July 8. On July 9, Emilia is trailing Daniel by 645 miles in the eastern Pacific, as both storms continue to move away from land.

The Tropical Rainfall Measuring Mission (TRMM) satellite recently saw both tropical cyclones. TRMM flew above hurricane Daniel on July 8, 2012 at 0019 UTC (July 7, 2012 5:19 p.m. PDT) and over Emilia when it was a tropical storm on July 8, 2012 at 0837 UTC (1:37 a.m. PDT). Rainfall data collected with TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments was overlaid on enhanced infrared and visible images from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. to show the intensity of the rain falling within each storm.

TRMM noticed only light-to-moderate rainfall happening within Daniel, as the hurricane continues to weaken. Light-to-moderate rainfall means rain is falling between 20 and 40 millimeters (.78 to 1.57 inches) per hour.

When TRMM passed over Tropical Storm Emilia on July 8, before she became a hurricane, data showed various areas of heavy rainfall in bands of thunderstorms along the northwestern, north, and eastern quadrants, feeding into the center. The heavy rain was falling at a rate of more than 2 inches/50 mm per hour. Surrounding the areas of heavy rain were large areas of light-to-moderate rainfall between 20 and 40 millimeters (.78 to 1.57 inches) per hour.

NASA's Terra satellite also passed over both storms, providing a clear, visible image of the cloud cover and extent on July 8. At that time, compact Daniel had a visible eye, while Emilia did not, and was still getting organized.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Terra satellite captured a visible image of Hurricane Daniel in the eastern Pacific on July 8, 2012 at 1920 UTC 3:20 p.m. EDT that showed the tight circulation of the storm, and a small cloud-filled eye.

On July 9, Hurricane Daniel had maximum sustained winds near 85 mph (140 kmh). The center of Daniel was about 1355 miles (2185 km) west-southwest of the southern tip of Baja California, near latitude 15.3 north and longitude 129.1 west. The National Hurricane Center reports that "Daniel is moving toward the west near 15 mph (24 kmh) and this general motion with a slight increase in forward speed is expected during the next couple of days. Slow weakening is forecast during the next 48 hours."

Hurricane-force winds only extend out 25 miles (35 km) from the center, and tropical storm-force winds extend out up to 115 miles (185 km), making Daniel about 230 miles in diameter.

NASA's Terra satellite captured a visible image of Emilia when it was a tropical storm off the western coast of Mexico on July 8, 2012 at 1745 UTC 1:45 p.m. EDT. The storm appeared comma-shaped, but there was no visible eye in the center of circulation.

Emilia underwent rapid intensification today, July 9, from a tropical storm in the morning hours (Pacific Daylight Time/local time) into a category two hurricane. Emilia's maximum sustained winds were near 100 mph (160 kmh) and the National Hurricane Center noted that she could become a major hurricane (Category Three) later today. Emilia was located about 710 miles (1145 km) south of the southern tip of Baja California. Emilia is moving at 12 mph (19 kmh) to the west-northwest.

Just like Daniel, Emilia's hurricane force winds extend outward up to 25 miles (35 km) from the center of circulation, but Emilia's tropical-storm-force winds are much smaller in area, extending to 80 miles (130 km). Size doesn't matter here, though, because Emilia is expected to become a major hurricane in the next day, while Daniel weakens.

5 Images and captions:

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>