Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM sees heavy rainfall in Cyclone Laila's India landfall

21.05.2010
NASA's Tropical Rainfall Measuring Mission or TRMM satellite captured a satellite image of Laila's rainfall and revealed some areas of heavy rainfall.

TRMM not only measures rainfall intensity from space but can also give scientists an idea about the height of a thunderstorm that is generating the rainfall within the tropical cyclone. Tropical cyclones are made up of hundreds of thunderstorms.

A "hot tower" is a rain cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 kilometers) high in the tropics. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid.

On May 20 at 0714 UTC (3:14 a.m. EDT) TRMM flew over Laila after it made landfall in India and captured an image of its rainfall rates. The heaviest rainfall appeared just southeast of the center of circulation, and over land (along the coast). That area was generating rainfall of about 2 inches per hour.

Rain rates are created from different instruments aboard TRMM. The rain rates in the center of TRMM images are derived from the TRMM Precipitation Radar, the only space borne radar of its kind, while those in the outer portion are from the TRMM Microwave Imager. The rain rates are then overlaid on infrared data from the TRMM Visible Infrared Scanner to create the entire image. The images are created at NASA's Goddard Space Flight Center, in Greenbelt, Md.

At 9:00 UTC (5 a.m. EDT) Laila had maximum sustained winds near 50 knots (57 mph). The center of Tropical Storm Laila was close to the town of Bapatla. Bapatla is one of the historical towns and mandals of Guntur District (Andhra Pradesh) located 40 miles south of Guntur City on the East Coast of India. It is also about 220 nautical miles west-southwest of Visakhapatnam, near 16.0 North and 80.1 East.

Laila was moving north-northwestward at 10 knots (12 mph). The Joint Typhoon Warning Center noted that as Laila "follows this path it will encounter the rugged terrain of northeastern Andhra Pradesh and weaken. However, a formidable remnant low is expected to reemerge over the northern Bay of Bengal after 72 hours and accelerate east-northeastward toward eventual landfall over or near south-eastern Bangladesh."

Residents along coastal areas of Andhra Pradesh and Telangana in other areas in Laila's path can expected widespread heavy rainfall and gusty winds. Seas will also be rough, and fishermen were advised by the India Meteorological Department to stay out of the ocean.

For forecast updates from the India Meteorological Department, visit: www.imd.gov.in/section/nhac/dynamic/cyclone.htm

For more information about NASA's TRMM satellite, visit: trmm.gsfc.nasa.gov

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>