Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite sees Typhoon Roke intensify rapidly before landfall in Japan

22.09.2011
The Tropical Rainfall Measuring Mission (TRMM) satellite captured rainfall and cloud data from Typhoon Roke as it rapidly intensified before making landfall in Japan earlier today.

Typhoon Roke followed a looping path for five days while maintaining tropical-storm strength prior to intensifying to typhoon-strength at 12 UTC (8 a.m. EDT) on September 19, 2011.


This large-scale image provides context for the 3D radar data (in gray) by showing the three-day surface rainfall accumulation (rainbow colors) along the track of the storm (gray line). Also shown is the significant rainfall accumulation (over 200 mm or ~8 inches) over the Japanese Island of Kyushu to the north of Typhoon Roke. Credit: Credit: NASA/TRMM/Owen Kelley

When the TRMM satellite flew over Typhoon Roke, it was in the process of rapidly intensifying from a Category 1 to 3 storm on the Saffir-Simpson scale (that measures hurricane/typhoon intensity). Owen Kelley of the TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. created a large-scale image that provides context for 3-D radar data by showing the three-day surface rainfall accumulation along the track of the storm. The image also showed significant rainfall accumulation (over 200 mm or ~8 inches) over the Japanese Island of Kyushu to the north of Typhoon Roke.

This rain system continued to interact with Typhoon Roke in the subsequent 24 hours as Typhoon Roke continued moving north toward Japan's largest Island, Honshu.

The second image Kelley created zooms into the inner core of Typhoon Roke during a period of rapid intensification, seen by the TRMM satellite at 1351 UTC (9:51 a.m. EDT) on September 19, 2011.

That image showed cloud-top temperatures seen by the infrared instrument on the TRMM satellite and revealed where clouds were shallow, where they reach above the freezing level, and powerful thunderstorms that approached the tropopause indicating vigorous convection (rapidly rising air that form thunderstorms that power a tropical cyclone).

By creating an image in 3-D precipitation, becomes visible in the storm clouds. The 3-D image depicted rainfall and cloud height. The 3-D image was color coded where green tinting indicated precipitation reaching an altitude of 8.5 km (5.2 miles) and yellow tinting indicates an altitude of 11 km (6.8 miles). These altitudes are far above the freezing level that is typically near 5 km (3.1 miles) altitude in the tropics. When air rises more than a kilometer or so the freezing level, any moisture that condenses is likely to form ice hydrometeors instead of liquid hydrometeors and thereby release additional latent heat that may help fuel the storm.

This particular overflight of Typhoon Roke showed a remarkably well-organized circular eyewall especially for a typhoon that was classified at merely tropical-storm strength earlier the same day. However, other aspects of the TRMM radar data suggest modest intensity. Specifically, there is almost no radar reflectivity above 45 dBZ, and the inner volume of >42 dBZ is very small in the circular eyewall. A larger volume of strong reflectivity would indicate the formation of large ice hydrometeors or extremely heavy liquid precipitation. Either event would be evidence of very vigorous updrafts. Also, there was a complete absence of lightning flashes in either the eyewall or in the rainband to the east of the eyewall, based on observations by the TRMM Lightning Imaging System (LIS).

TRMM is managed by both NASA and the Japanese Space Agency, JAXA.

By 11:18 a.m. EDT (15:18 UTC) on Sept. 21, the southern edge of Roke was passing over Tokyo, while the northern extent stretched past Sapporo far to the north.

The Japan Meteorological Agency reported sustained winds of 103 mph (167 kph) and heavy rainfall in Japan's Tokai and Kanto regions earlier today. News reports have attributed four deaths to the storm and noted that rainfall had occurred at 2 inches (50 millimeters) per hour, confirming the data from the TRMM satellite. Roke is expected to re-emerge over water and transition into an extra-tropical storm later today.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: 3-D image EDT Goddard Space Flight Center Roke TRMM satellite Typhoon UTC satellites

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>