Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite sees TD10S strengthen into Tropical Storm Bianca

27.01.2011
The life of a cyclone is a complex one, and NASA satellites have kept track of a low that has now become Tropical Storm Bianca just off the northern coast of Western Australia.

What began as a low pressure system designated as System 98S on January 24, brought rains near Kuri Bay, Australia. On January 25, System 98S strengthened into the tenth tropical depression of the Southern Pacific Ocean hurricane season and was designated as "10S." Today, January 26, that low intensified into a tropical storm and was named Bianca.


NASA\'s TRMM satellite captured Tropical Storm Bianca\'s rainfall on Jan. 26. The yellow and green areas indicate moderate rainfall between .78 to 1.57 inches (20 to 340 mm) per hour. Over open waters, in the northwestern quadrant of the storm, there were some areas of heavy rainfall at almost 2 inches (50 mm) per hour. Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite has been monitoring rainfall in the storm to assist area forecasters. NASA's TRMM satellite captured Tropical Storm Bianca's rainfall on January 26 at 01:09 UTC (Jan. 25 at 8:09 p.m. EST). Most of the rainfall around the storm was moderate, falling at rates between .78 to 1.57 inches (20 to 340 mm) per hour. Over open waters, in the northwestern quadrant of the storm, there were some areas of heavy rainfall at almost 2 inches (50 mm) per hour. The TRMM image also clearly showed the storm's center was located off the coast and over open waters. The TRMM satellite is managed by both NASA and JAXA, and images are created at NASA's Goddard Space Flight Center in Greenbelt, Md.

On January 26 at 02:20 UTC (Jan. 25 at 9:20 p.m. EST) NASA's Terra satellite passed over Bianca and the Moderate Resolution Spectroradiometer (MODIS) instrument captured an image of Bianca. The image showed a cloud-filled center of circulation just north of the northern coast of Western Australia. Most of the cloud cover associated with Bianca appeared over open waters at that time. The Terra satellite image can be found here. The image was created by NASA's MODIS Rapid Response Team, located at NASA Goddard.

At 1500 UTC (10 a.m. EST) on January 26, Tropical Storm Bianca had maximum sustained winds near 60 knots (69 mph/111 km/hr). It was centered about 225 nautical miles northeast of Learmonth, Australia near 19.8 South latitude and 116.2 East longitude. It was moving westward near 14 knots (16 mph/25 km/hr) and its center was staying off-shore.

Radar imagery from Port Hedland, Australia showed a well-defined low level circulation center with thunderstorms surrounding it. The Joint Typhoon Warning Center forecast indicates that the center of Bianca will stay over open waters as it continues to intensify over the next 24 hours. It is then expected to curve to the southeast and westerly winds are expected to increase and it will move into cooler waters, two factors that will help weaken the storm.

NASA's Hurricane page: www.nasa.gov/hurricane

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/hurricane

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>