Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Cyclone Jasmine in 3-D

10.02.2012
Data from NASA's TRMM satellite was used to create a 3-Dimensional look at Cyclone Jasmine, currently moving through the South Pacific Ocean.

The Tropical Rainfall Measuring Mission (TRMM) satellite is managed by both NASA and the Japanese Space Agency. Using TRMM data, 3-D images of Cyclone Jasmine were created at NASA's Goddard Space Flight Center in Greenbelt, Md.

The TRMM satellite traveled directly above tropical cyclone Jasmine in the South Pacific Ocean on February 8, 2012 at 2156 UTC (4:56 p.m. EST). Jasmine was classified as a powerful category 4 on the Saffir Simpson Scale with wind speeds of 115 kts (~132 mph) at its peak intensity but had started to weaken at the time of this pass.

A 3-D image was created using data from TRMM's Precipitation Radar (PR). The 3-D cutaway image revealed the funnel shaped surface of Jasmine's eye. TRMM PR data also showed that heights of Jasmine's tallest storms then reached to heights of about 11.5 km (~7.1 miles).

Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments showed that intense thunderstorms in bands wrapping around Jasmine's large circular eye were dropping rain at a rate of over 50mm/hr (~2 inches). This was a daytime pass so the rainfall analysis was overlaid on a visible/infrared image from TRMM's Visible and InfraRed Scanner (VIRS) instrument.

Infrared imagery from instruments like the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite revealed that cloud top temperatures in Jasmine have been warming since early morning on February 9, 2012. That's an indication that the system is losing strength and the cloud tops are falling.

Jasmine is a small cyclone, only about 90 nautical miles (103.6 miles/166.7 km)in diameter, and the eye is about 20 nautical miles (23.2 miles/37 km) wide.

On February 9, 2012 at 0900 UTC, Jasmine's maximum sustained winds were near 105 knots (120.8 mph/194.5 kph). Jasmine was about 275 nautical miles (316.5 miles/509.3 km) east-southeast of Noumea, New Caledonia near 28.8 South and 171.4 East. Jasmine is moving to the south-southeast around 10 knots (11.5 mph/18.5 kph).

Jasmine is expected to move over cooler waters and encounter drier air, two factors that will further weaken the storm.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Jasmine.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>