Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's TRMM Satellite Sees Cyclone Jasmine in 3-D

Data from NASA's TRMM satellite was used to create a 3-Dimensional look at Cyclone Jasmine, currently moving through the South Pacific Ocean.

The Tropical Rainfall Measuring Mission (TRMM) satellite is managed by both NASA and the Japanese Space Agency. Using TRMM data, 3-D images of Cyclone Jasmine were created at NASA's Goddard Space Flight Center in Greenbelt, Md.

The TRMM satellite traveled directly above tropical cyclone Jasmine in the South Pacific Ocean on February 8, 2012 at 2156 UTC (4:56 p.m. EST). Jasmine was classified as a powerful category 4 on the Saffir Simpson Scale with wind speeds of 115 kts (~132 mph) at its peak intensity but had started to weaken at the time of this pass.

A 3-D image was created using data from TRMM's Precipitation Radar (PR). The 3-D cutaway image revealed the funnel shaped surface of Jasmine's eye. TRMM PR data also showed that heights of Jasmine's tallest storms then reached to heights of about 11.5 km (~7.1 miles).

Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments showed that intense thunderstorms in bands wrapping around Jasmine's large circular eye were dropping rain at a rate of over 50mm/hr (~2 inches). This was a daytime pass so the rainfall analysis was overlaid on a visible/infrared image from TRMM's Visible and InfraRed Scanner (VIRS) instrument.

Infrared imagery from instruments like the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite revealed that cloud top temperatures in Jasmine have been warming since early morning on February 9, 2012. That's an indication that the system is losing strength and the cloud tops are falling.

Jasmine is a small cyclone, only about 90 nautical miles (103.6 miles/166.7 km)in diameter, and the eye is about 20 nautical miles (23.2 miles/37 km) wide.

On February 9, 2012 at 0900 UTC, Jasmine's maximum sustained winds were near 105 knots (120.8 mph/194.5 kph). Jasmine was about 275 nautical miles (316.5 miles/509.3 km) east-southeast of Noumea, New Caledonia near 28.8 South and 171.4 East. Jasmine is moving to the south-southeast around 10 knots (11.5 mph/18.5 kph).

Jasmine is expected to move over cooler waters and encounter drier air, two factors that will further weaken the storm.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>