Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite and HS3 Mission Checking out Tropical Storm Humberto

18.09.2013
NASA's TRMM satellite watched Tropical Storm Humberto's rainfall pick up over two days as it re-formed, and as part of NASA's HS3 mission, two of NASA's Global Hawk unmanned aircraft have been investigating the zombie storm. The two Global Hawks also celebrated a combined 100 flights.

NASA's Global Hawk 871 departed from NASA's Wallops Flight Facility, Wallops Island, Va. today, Sept. 17, at 10 a.m. EDT from Runway 04. This marked the twenty-fifth flight for NASA 871. Meanwhile, NASA 872 was returning to home base after making its seventy-fifth flight. These flights over Tropical Storm Humberto brought forth the one-hundredth flight of NASA's Global Hawks.


The AIRS instrument aboard NASA's Aqua satellite captured this infrared image of Humberto on Sept. 17 at 4:29 UTC/12:289 a.m. EDT. The image showed the highest storms and coldest cloud top temperatures (purple) northeast of the center.

Image Credit: NASA JPL, Ed Olsen

NASA's Global Hawk 872 unmanned aircraft took off at 10:42 a.m. EDT from Runway 22 at NASA's Wallops Flight Facility, Wallops Island, Va. on Sept. 16 to investigate Humberto and dispersed dropsondes throughout the storm. NASA 872 gathered data on the environment of the storm. Global Hawk aircraft are well-suited for hurricane investigations because they can fly for as long as 28 hours and over-fly hurricanes at altitudes greater than 60,000 feet (18.3 km).

Tropical storm Humberto had little deep convection and was classified by the National Hurricane Center (NHC) as a post-tropical cyclone on September 14, 2013. By September 16, Humberto was showing bursts of strong convection and thunderstorms were developing with heavy rainfall, so Humberto was again classified a tropical storm.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite observed Humberto on September 15, 2013 at 1652 UTC (12:52 p.m. EDT) and on September 16, 2013 at 1557 UTC (11:57 a.m. EDT). A comparison of the two TRMM orbits showed significant changes that occurred within Humberto in less than 24 hours. In the first orbit on September 15, 2013 Humberto's center of circulation was rain free and only contained a small area of convective rainfall that was located well to the north of Humberto's surface location. Areas of strong convective rainfall were associated with rebounding Tropical Storm Humberto when TRMM viewed the same area on September 16, 2013.

The Atmospheric Infrared Sounder instrument aboard NASA's Aqua satellite captured an infrared image of Humberto on Sept. 17 at 4:29 UTC/12:289 a.m. EDT. The image showed the highest storms and coldest cloud top temperatures were still east and northeast of the center and were dropping the heaviest rainfall. .

At 11 a.m. EDT on Sept. 17 the center of Tropical Storm Humberto was located near latitude 29.4 north and longitude 42.5 west, about 1070 miles/1,720 km west-southwest of the Azores Islands. Humberto's maximum sustained winds were near 45 mph/75 kph and the National Hurricane Center expects some slight strengthening. Humberto is moving to the north at 10 mph/17 kph and is expected to turn to the northwest and slow down before heading north again on Sept. 18.

HS3 is a mission that brings together several NASA centers with federal and university partners to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. Among those factors, HS3 will address the controversial role of the hot, dry and dusty Saharan Air Layer in tropical storm formation and intensification and the extent to which deep convection in the inner-core region of storms is a key driver of intensity change. The HS3 mission will operate between Aug. 20 and Sept. 23.

Humberto is forecast to again become a post-tropical low in about four days.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/humberto-atlantic-ocean/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>