Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite and HS3 Mission Checking out Tropical Storm Humberto

18.09.2013
NASA's TRMM satellite watched Tropical Storm Humberto's rainfall pick up over two days as it re-formed, and as part of NASA's HS3 mission, two of NASA's Global Hawk unmanned aircraft have been investigating the zombie storm. The two Global Hawks also celebrated a combined 100 flights.

NASA's Global Hawk 871 departed from NASA's Wallops Flight Facility, Wallops Island, Va. today, Sept. 17, at 10 a.m. EDT from Runway 04. This marked the twenty-fifth flight for NASA 871. Meanwhile, NASA 872 was returning to home base after making its seventy-fifth flight. These flights over Tropical Storm Humberto brought forth the one-hundredth flight of NASA's Global Hawks.


The AIRS instrument aboard NASA's Aqua satellite captured this infrared image of Humberto on Sept. 17 at 4:29 UTC/12:289 a.m. EDT. The image showed the highest storms and coldest cloud top temperatures (purple) northeast of the center.

Image Credit: NASA JPL, Ed Olsen

NASA's Global Hawk 872 unmanned aircraft took off at 10:42 a.m. EDT from Runway 22 at NASA's Wallops Flight Facility, Wallops Island, Va. on Sept. 16 to investigate Humberto and dispersed dropsondes throughout the storm. NASA 872 gathered data on the environment of the storm. Global Hawk aircraft are well-suited for hurricane investigations because they can fly for as long as 28 hours and over-fly hurricanes at altitudes greater than 60,000 feet (18.3 km).

Tropical storm Humberto had little deep convection and was classified by the National Hurricane Center (NHC) as a post-tropical cyclone on September 14, 2013. By September 16, Humberto was showing bursts of strong convection and thunderstorms were developing with heavy rainfall, so Humberto was again classified a tropical storm.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite observed Humberto on September 15, 2013 at 1652 UTC (12:52 p.m. EDT) and on September 16, 2013 at 1557 UTC (11:57 a.m. EDT). A comparison of the two TRMM orbits showed significant changes that occurred within Humberto in less than 24 hours. In the first orbit on September 15, 2013 Humberto's center of circulation was rain free and only contained a small area of convective rainfall that was located well to the north of Humberto's surface location. Areas of strong convective rainfall were associated with rebounding Tropical Storm Humberto when TRMM viewed the same area on September 16, 2013.

The Atmospheric Infrared Sounder instrument aboard NASA's Aqua satellite captured an infrared image of Humberto on Sept. 17 at 4:29 UTC/12:289 a.m. EDT. The image showed the highest storms and coldest cloud top temperatures were still east and northeast of the center and were dropping the heaviest rainfall. .

At 11 a.m. EDT on Sept. 17 the center of Tropical Storm Humberto was located near latitude 29.4 north and longitude 42.5 west, about 1070 miles/1,720 km west-southwest of the Azores Islands. Humberto's maximum sustained winds were near 45 mph/75 kph and the National Hurricane Center expects some slight strengthening. Humberto is moving to the north at 10 mph/17 kph and is expected to turn to the northwest and slow down before heading north again on Sept. 18.

HS3 is a mission that brings together several NASA centers with federal and university partners to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. Among those factors, HS3 will address the controversial role of the hot, dry and dusty Saharan Air Layer in tropical storm formation and intensification and the extent to which deep convection in the inner-core region of storms is a key driver of intensity change. The HS3 mission will operate between Aug. 20 and Sept. 23.

Humberto is forecast to again become a post-tropical low in about four days.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/humberto-atlantic-ocean/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>