Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Operation IceBridge Data Brings New Twist to Sea Ice Forecasting

20.12.2012
Shrinking Arctic sea ice grabbed the world's attention again earlier this year with a new record low minimum.

Growing economic activity in the Arctic, such as fishing, mineral exploration and shipping, is emphasizing the need for accurate predictions of how much of the Arctic will be covered by sea ice. Every June, an international research group known as the Study of Environmental Arctic Change (SEARCH) publishes a summary of the expected September Arctic sea ice minimum known as the Sea Ice Outlook. The initial reports and monthly updates aim to give the scientific community and public the best available information on sea ice.


A Digital Mapping System (DMS) mosaic of Arctic sea ice. The dark areas are leads, or open areas of water. Identifying leads is one of the necessary steps in preparing IceBridge’s quick look sea ice thickness data product. Credit: NASA / DMS team

Researchers rely on models that use estimated ice thickness data and simulated atmospheric conditions to forecast how sea ice will change during the summer. For the first time, near real-time ice thickness data obtained by NASA's Operation IceBridge has been used to correct a forecast model's initial measurements, which could lead to improved seasonal predictions.

In a paper published last month in the journal Geophysical Research Letters, Ron Lindsay, IceBridge science team member and Arctic climatologist with the Polar Science Center at the University of Washington in Seattle, outlined efforts to use IceBridge data to improve the accuracy of seasonal sea ice forecasts. Lindsay and colleagues used a new quick look sea ice data product that IceBridge scientists released before the end of the Arctic campaign earlier this year. The quick look data, intended for use in time-sensitive applications like seasonal forecasts, supplements the final sea ice data product typically released roughly six months after the campaign. By using new data processing techniques, IceBridge scientists were able to publish the quick look measurements in a matter of weeks. "The idea was to make the data available for anyone to use for the Sea Ice Outlook," said sea ice scientist Nathan Kurtz of NASA's Goddard Space Flight Center in Greenbelt, Md.

The work outlined in Lindsay's paper marks the first use of IceBridge quick look data in an ensemble sea ice forecast (computer) model. "An ensemble forecast is where you run a single forecast model many different times," said Lindsay. In this case, they ran the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) model seven times using conditions from previous summers. PIOMAS uses sea ice extent, the area of sea containing sea ice, and atmospheric data to simulate ice and ocean conditions.

IceBridge data and thickness measurements made by the Seasonal Ice Zone Observing Network (SIZONet), a multidisciplinary project aimed at observing Arctic sea ice, served as a way to correct initial sea ice conditions. These initial measurements come from running the forecast model with historical atmospheric conditions. Lindsay and colleagues used IceBridge and SIZONet data to adjust these measurements and then used the PIOMAS model to create a forecast of September's mean sea ice extent. To make sure what effect the corrected measurements had, they also ran the model as normal, something known as a control run.

Careful Measurements

Before this forecasting work could begin though, the researchers had to gather and process data, something that takes the hard work of many people. During March and April of 2012, IceBridge gathered sea ice thickness data using four different airborne science instruments.

First, researchers measure the surface freeboard, or the amount of ice and snow above the sea level height, using a laser altimeter known as the Airborne Topographic Mapper (ATM). Next, they use snow thickness data derived from airborne snow radar and subtract that to get an accurate ice freeboard measurement. This figure is then combined with known average density measurements to calculate total ice thickness, of which freeboard is typically only 10 percent. One other instrument, the KT-19 temperature sensor, was used to detect leads, or openings, in sea ice, which are used to determine the sea level height.

SIZONet scientists used a different method, measurements from a helicopter-borne electromagnetic sensor that detects differences in how well sea ice and ocean water conduct electricity, giving a distance between the sensor and ocean water below.

Collecting measurements is only the beginning of the work. Measurements from the ATM laser have to be combined with information from the aircraft's GPS and inertial navigation systems and the readings have to be filtered to remove things like false returns from low clouds and fog. Preparing instrument data for release is a labor-intensive and time-consuming process that normally takes six months. With the quick look product, it was done in a matter of weeks.

Producing quality data so quickly is challenging, but the process proved a good test of the instrument team's talents. "We gained some valuable insights into our capabilities," said ATM senior scientist John Sonntag. "This new confidence in the quick data may open new avenues for us in the future."

Looking Forward

The September mean ice extent for the corrected model were slightly closer to the actual result than the control forecast run, but both were fairly far off from the actual record minimum. This may have been due to unusual weather over the summer, including a large Arctic storm in August, or to deficiencies in the model simulation of the new very thin ice conditions of the Arctic. Lindsay said winds have a bigger impact on the thinner ice of recent years than on thick ice. It may be possible to redo this experiment, using this summer's atmospheric conditions in the forecasts. "This would tell us the impact of the observations for the weather we actually experienced," said Lindsay.

As a step in a new direction, the study and quick look data collection could improve sea ice forecasts in the future. Providing near real-time sea ice data may also help in other areas, such as evaluating model performance.

With plans to produce another quick look product in the coming 2013 Arctic campaign, Kurtz is hopeful that IceBridge data will be useful to sea ice forecasters and other researchers. "The question is how will people use it," Kurtz said.

For more information about the SEARCH Sea Ice Outlook, visit:
http://www.arcus.org/search/seaiceoutlook/index.php
For more information about IceBridge's quick look sea ice data, read:
http://www.nasa.gov/mission_pages/icebridge/news/spr12/arctic-seaice.html

For more information about Operation IceBridge, visit:
http://www.nasa.gov/icebridge
George Hale
NASA's Goddard Space Flight Center, Greenbelt, Md.

George Hale | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/seaice-forecasting.html

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>