Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's HyspIRI: Seeing the Forest and the Trees and More!

23.04.2013
To Robert Green, light contains more than meets the eye: It contains fingerprints of materials that can be detected by sensors that capture the unique set of reflected wavelengths.

Scientists have used the technique, called imaging spectroscopy, to learn about water on the moon, minerals on Mars and the composition of exoplanets. Green's favorite place to apply the technique, however, is right here on the chemically rich Earth, which is just what he and colleagues achieved this spring during NASA's Hyperspectral Infrared Imager (HyspIRI) airborne campaign.


The HyspIRI airborne campaign overflew California's San Andreas Fault on March 29, 2013. The three-color (red, green, blue) composite image of the fault (left), composed from AVIRIS data, is similar to what a snapshot from a consumer camera would show. The entirety of data from AVIRIS, however, spans the visible to the short-wavelength infrared part of the spectrum. Temperature information (right) was collected simultaneously by the MASTER instrument. Red areas are composed of minerals with high silica, such as urban areas, while darker and cooler areas are composed of water and heavy vegetation.
Credit: NASA/JPL

"We have ideas about what makes up Earth's ecosystems and how they function," said Green, of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and principal investigator of the campaign's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument. "But a comprehensive understanding requires us to directly measure these things and how they change over landscapes and from season to season."

Toward that goal, scientists and engineers ultimately plan to launch the HyspIRI satellite -- a mission recommended by the 2007 National Academy of Sciences Decadal Survey -- to determine the spectral and thermal characteristics of the world's ecosystems, which are sensitive to changes in vegetation health, as well as detecting and understanding changes in other surface phenomena including volcanoes, wildfires and droughts.

Prior to flying the sensors in space, however, preparatory science investigations are underway using similar sensor technology installed on NASA's ER-2, a high-altitude aircraft based at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif. The first season of the HyspIRI airborne campaign concludes on April 25 after about a month of flights that spanned the state. Additional sets of California flights are planned for this summer and then this fall.

"We are collecting data over six zones across very diverse regions of California, from the coast to high-elevation terrain, from alpine areas to deserts to coastal ecosystems, and from agricultural to urban landscapes," Green said.

For example, the campaign's first test flight on March 29 collected data along a series of parallel flight lines. The resulting image covers about six miles in width and almost 100 miles in length. One flight happened to pass over the San Andreas Fault. Inclusion of the fault in the flight plan was incidental, but it was a "spectacular" flight nonetheless, Green said.

Spectacular, Green notes, because each pixel holds a wealth of information invisible to the naked eye. Most light-collecting instruments on existing spacecraft observe light reflected from Earth, then filter the wavelengths and transmit only the snippets of the spectrum that are relevant to the mission's science. The point of HyspIRI, however, is to collect and transmit all of the wavelengths, from the visible to the short wavelength infrared as well as selected wavelengths in the thermal-infrared, revealing the unique spectral signature of the light in each pixel. The signature is akin to a fingerprint, from which scientists can make more quantitative assessments of ecosystems.

"With imaging spectroscopy we can unambiguously understand what things are from aircraft at an altitude of 65,000 feet, as revealed by the molecular and light-scattering characteristics, which determine the material's spectral fingerprint," Green said.

"Imaging spectroscopy is a mature and proven technology that provides a unique way to characterize what's happening on the surface of Earth," said Stephen Ungar of NASA's Goddard Space Flight Center in Greenbelt, Md., and previous mission scientist of the Earth Observing 1 (EO-1) mission. EO-1 is a technology pathfinder satellite that has validated technology and science applications for spaceborne imaging spectroscopy.

The horizontal resolution from the AVIRIS imaging spectrometer on the ER-2 equates to about 60 feet (20 meters) per pixel. From space the resolution is expected to be closer to 180 feet (60 meters) per pixel -- with the added benefit of consistent global coverage roughly every season of the year.

A second instrument flying on the ER-2 during the campaign is the MODIS/ASTER Airborne Simulator (MASTER), led by Simon Hook of JPL. The instrument extends the measurements into the thermal-infrared part of the spectrum, which becomes useful for detecting land types as well as understanding processes such as fire and drought.

"To assess ecosystems' diversity and how they function we need to understand both ecosystem spectral and thermal properties," said Petya Campbell of NASA Goddard and a scientist with the EO-1 mission. "Using the information together will enable a revolution in ecology."

Now 14 research groups from across the country will take the data collected during the campaign and delve into a wide range of investigations. These include exploring the sources of natural- and human-produced methane emissions in California, teasing out the dynamics of algal blooms, and observing how seasonal and environmental changes affect plant species.

This airborne science mission continues with the collection of additional imagery later this year and in 2014.

Kathryn Hansen
NASA's Earth Science News Team

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/hyspiri.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>