Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hot Tower Research Confirmed Again with Tropical Storm Sandy

24.10.2012
The eighteenth tropical depression only took six hours to strengthen into Tropical Storm Sandy, confirming NASA research that sighting of hot towers leads to intensification.

Sandy may further intensify into a hurricane and watches and warnings have been posted in the Caribbean Sea. On Oct. 23, a Hurricane Watch and Tropical Storm Warning were in effect for Jamaica, and a tropical storm watch was in effect for Haiti.


NASA's TRMM satellite flew over the developing tropical depression 18 on Oct. 21 at 8:40 p.m. EDT. This 3-D perspective showed powerful storms near the center were reaching altitudes of over 14 km (~8.7 miles). Red areas indicate heavy rainfall of 50 mm/2 inches per hour.
Credit: NASA/SSAI, Hal Pierce

A low pressure center in the southwestern Caribbean sea was upgraded to Tropical Depression 18 by the National Hurricane Center (NHC) yesterday, Oct. 22 at 1500 UTC (11:00 a.m. EDT). The Tropical Rainfall Measuring Mission satellite, otherwise known as TRMM passed directly above the newly formed tropical depression on October 22, 2012 at 1533 UTC (October 21, 2012 at 11:33 p.m. EDT). TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data were used to determine the rainfall rates occurring within the depression and the newly formed tropical depression was already showing good organization. Some intense convective storms near the center of circulation dropping rain at a rate of about 50 mm (~2 inches) per hour.

NASA's 3-D Look at Tropical Storm Sandy

A 3-D perspective was made at NASA's Goddard Space Flight Center in Greenbelt, Md. using data from TRMM Precipitation Radar (PR) from the orbit. Powerful storms called "hot towers" located near the center of TD18's circulation were reaching altitudes of over 14 km (~8.7 miles). Towering thunderstorms like these at the center of tropical cyclones are often a sign of intensification.

A "hot tower" is a rain cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. The troposphere peaks around nine miles (14.5 km) high in the tropics. The towering clouds are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA scientists Owen Kelley and John Stout of George Mason University and NASA's Goddard Space Flight Center, Greenbelt, Md., found that a tropical cyclone with a hot tower around its center of circulation was twice as likely to intensify within the next six hours, than a cyclone that lacked a tower. That's exactly what happened on Oct. 22, when TRMM spotted hot towers in Tropical Depression 18. It became Tropical Storm Sandy just six hours later.

Sandy's Stats on Oct. 23

On Oct. 23 at 8 a.m. EDT (1200 UTC), Tropical Storm Sandy's maximum sustained winds were near 45 mph (75 kph) and the National Hurricane Center expects the storm to strengthen over the next two days. The center of Tropical Storm Sandy was located near latitude 13.4 north and longitude 77.9 west, about 325 miles (525 km) south-southwest of Kingston, Jamaica. Sandy was moving to the north-northeast near 3 mph (6 kph) and is expected to continue in that direction for the next two days taking the center of the tropical storm near or over Jamaica on Wed. Oct. 24. Sandy's estimated minimum central pressure is 997 millibars.

NASA Infrared Data on Sandy

Infrared satellite imagery captured on Oct. 23 at 0617 UTC (2:17 a.m. EDT) from the Atmospheric Infrared Sounder instrument aboard NASA's Aqua satellite showed that there are bands of strong thunderstorms east of Sandy's center of circulation . Those bands of thunderstorms are reaching high into the troposphere where cloud top temperatures are as cold as -63 Fahrenheit (-52 Celsius).

Sandy's Wind, Rain, Storm Surge

Tropical storm winds are expected to reach Jamaica during the night-time hours of Oct. 23 or early morning hours on Wed. Oct. 24. The National Hurricane Center noted that "hurricane conditions expected on Wed. Hurricane conditions are also possible in eastern Cuba by Wed. night. Tropical storm conditions are possible in Haiti on Oct. 24, and in central and southeastern Bahamas on Thurs. Oct. 24.

Sandy is expected to be a big rainmaker, generating between six and 12 inches across Jamaica, Haiti , the Domenican Republic and eastern Cuba. Isolated rainfall totals could reach 20 inches. In addition, storm surges are expect to raise water levels between one and three feet above normal tide levels.

The National Hurricane Center expects Sandy to strengthen into a hurricane over the next couple of days.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Sandy.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>