Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Global Hawk and Satellites See Tropical Storm Nadine Turning Around

25.09.2012
Tropical Storm Nadine is turning around in two ways. When NASA's Global Hawk flew over the storm it learned that the storm was not transitioning into an extra-tropical storm. Now, NASA satellites see that Nadine is physically turning its direction, and heading back to the west-northwest and away from land.

The fifth science flight of NASA's Global Hawk concluded when the aircraft landed at NASA's Wallops Flight Facility, Wallops Island, Va. on Sunday, Sept. 23 after flying over Tropical Storm Nadine in the Eastern Atlantic Ocean. The Hurricane and Severe Storms Sentinel (HS3) mission scientists changed the flight path during the Global Hawk flight to be able to overfly Nadine's center.


The fifth science flight of NASA's Global Hawk (green line) concluded when the aircraft landed at NASA's Wallops Flight Facility, Wallops Island, Va. on Sunday, Sept. 23 after flying over Tropical Storm Nadine in the Eastern Atlantic Ocean. The HS3 scientists changed the flight path (the original plan is in blue) during the GH flight to be able to overfly Nadine's center. Measurements from dropsondes found wind speeds greater than 60 knots at lower levels above the surface during that adjusted flight leg. Despite the large distance of Nadine from the U. S. East Coast, the Global Hawk was able to spend about 11 hours over the storm. The image shows the Global Hawk (red dot) returning to Wallops. Credit: NASA Wallops

"Measurements from dropsondes found wind speeds greater than 60 knots at lower levels above the surface during that adjusted flight leg," said Scott Braun, HS3 Mission Principal Investigator from NASA's Goddard Space Flight Center, Greenbelt, Md. "Despite the large distance of Nadine from the U. S. East Coast, the Global Hawk was able to spend about 11 hours over the storm."

NASA's Aqua satellite passed over the eastern Atlantic Ocean on Sept. 24 at 03:23 UTC, and the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of Tropical Storm Nadine's cloud top temperatures. The infrared data indicated the strongest thunderstorms and heaviest rainfall were to the northeast of the center of circulation. Those cloud top temperatures exceeded -63 Fahrenheit (-52 Celsius). Wind shear from the southwest has pushed the bulk of clouds and showers to the northeast.

On Friday, Sept. 24 at 11 a.m. EDT, Tropical Storm Nadine's maximum sustained winds are near 50 mph (85 kmh). Nadine was located about 440 miles (705 km) south of the Azores, near latitude 31.7 north and longitude 27.8 west. Nadine is moving west-northwest near 7 mph (11 kmh) and a gradual turn to the west and southwest is expected later.

The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012-nadine.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>