Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA 'Fire Towers' in Space Watch for Wildfires on the Rise

12.08.2013
The Black Forest wildfire this June was one of the most destructive in Colorado history, in terms of homes lost. It started close to houses and quickly spread through the ponderosa pine canopies on the rolling hills near Colorado Springs. The wildfire destroyed 500 homes in the first 48 hours and killed two people.

Hot, dry and windy weather played a role in that wildfire, said Don Smurthwaite, spokesperson with the National Interagency Fire Center (NIFC) in Boise, Idaho.

"Fire seasons are getting longer, western regions are getting drier, and more people are living closer to fire-prone areas."

Fire scientists have observed those conditions becoming more prevalent across the United States.

As the western United States enters what is typically the most active time of its fire season, scientists, firefighters and residents are keeping close watch on what's burning – not just this year, but over the long term. As temperatures warm and weather patterns change, scientists from NASA, universities and other government agencies are putting their satellite observation and computer modeling capabilities to work. They are grappling with what the future landscape of fire will look like in the American West.

"Over the last 30 years we have seen an increase in hot and dry conditions that promote fire activity," said Doug Morton, a scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. "And across the western U.S. and Alaska, satellites show an increase in the area that burns each year over that same time period."

As of Aug. 8 this year, wildfires have burned more than 2.5 million acres in the United States. Large wildfires are mainly driven by natural factors including the availability of fuel (vegetation), wind, and ignition sources from lightning and humans.

Fire Monitoring from Space

For more than a decade, instruments on Terra and Aqua, two of NASA’s flagship Earth-observing satellites, have scanned the surface of our planet for fires. An instrument on both satellites, the Moderate Resolution Imaging Spectroradiometer (MODIS), has revolutionized what scientists know about fire’s role in land cover change, ecosystem processes and the global carbon cycle by allowing researchers to map characteristics of the global distribution of fires in remarkable detail.

Circling the globe every 99 minutes, the two MODIS sensors provide four daily observations of active fires that are relayed to forest managers worldwide. The coordinates of active fires detected by MODIS are sent by text message, often within an hour after the satellite overpass, so agencies responsible for land management can assess ongoing fire activity and respond accordingly.

The recently launched NASA /NOAA Suomi National Polar-orbiting Partnership (Suomi-NPP) and its Visible Infrared Imaging Radiometer Suite (VIIRS) will continue the measurements from MODIS. The satellite provides two additional daily observations.

Another instrument called the Ozone Mapper Profiler Suite, or OMPS, that flies aboard the Suomi-NPP satellite measures relative aerosol concentrations, such as those generated by wildfires.

The U.S. Forest Service is one of the beneficiaries of NASA's fire detection capability and processing support from Goddard’s Direct Readout Laboratory. The Forest Service Remote Sensing Applications Center (RSAC) in Salt Lake City receives and processes MODIS data and provides derivative fire detection products to users in the United States "We provide this information to national and regional managers so that they have a current picture of ongoing fire activity and its effects (observed fire in

tensity, burned area and smoke extent) which assists in making strategic fire planning and response decisions," said Brad Quayle, a remote sensing specialist with RSCA.

Another tool that fire scientists use to predict where severe burns may occur is called Landfire, short for Landscape Fire and Resources Management Planning Tools project. The project uses data from Landsat satellites, a mission jointly operated by NASA and the U.S. Geological Survey.

Landfire provides maps of the nation's land cover including vegetation type, tree canopy cover and height. Together with weather information, this enables crucial fire behavior predictions to be made. These data feed into decision support systems that guide managers on where and when to deploy valuable firefighting resources and where to focus fire-prevention and recovery efforts.

USGS and the U.S. Forest Service started the program in 2003 after an intense U.S. wildfire season highlighted the need for unbiased information to guide decision makers as they allocate resources. "Fighting fires is a very expensive proposition," said Jim Vogelmann, research ecologist from USGS Earth Resources Observation and Science Center in Sioux Falls, S.D. Fire suppression costs last year topped $1.9 billion.

The first Landfire maps took five years of on-the-ground fieldwork, computer modeling and poring over satellite data to complete. Joshua J. Picotte is a remote sensing specialist with USGS in Sioux Falls. He updates Landfire data maps annually looking at changes in vegetation from previous wildfires, urban development or other disturbances. It takes two years and about 24,000 Landsat scenes to complete the annual U.S. update.

"We use Landsat for our land cover mapping and vegetation characterization efforts," Vogelmann said.

The extensive and free Landsat and MODIS archive also facilitates mapping and analyzing past wildfires. Forest Service and USGS analysts are in the process of mapping the frequency, size and severity of all large fires from 1984 to present. Quayle believes the information from this project, Monitoring Trends in Burn Severity (mtbs.gov), will give scientists a better understanding of how climate change is affecting wildfire in the United States.

2013 and Beyond

The 2013 wildfire season got off to an early start in California and Colorado. Morton said the newest generation of climate models project drier conditions that likely will cause increased fire activity across the United States in coming decades. These changes are likely to come in a number of different forms, including longer fire seasons, larger areas at risk of wildfire, and an increase in the frequency of extreme events—years like 2012 in the western United States. A study published by Morton and colleagues this year suggests that the increase in burned area across the United States may already be underway.

Fire seasons are starting earlier, due to warmer spring temperatures and earlier snow melt, and they are lasting longer into the fall. Snow cover shortens the fire season because dry vegetation is not a factor in fire ignition or progression.

Rain will lead to build-up of grasses that dry out in the summer heat and become fuel for fires. “So while it may be warmer, it is the shift from snow to rain that increases fire risk,” said Jeff Eidenshink, fire science team lead with the USGS EROS facility.

While destructive to property and life, the 14,000-acre Black Forest wildfire in Colorado was relatively small for this year's western wildfire season. According to the NIFC statistics, the West Fork Complex Fire in Colorado burned 109,615 acres, the Colockum Tarps Fire in the southeast region of Washington is at 80,881 acres, and the Moore Creek Fire in Alaska is 157,748 acres.

"A 100,000-acre wildfire used to be unusual, you would see one every few years," said Carl Albury, a contractor with the Forest Service-Remote Sensing and Applications Center in Salt Lake City. "Those type of fires are becoming a yearly occurrence."

NASA recently launched the Landsat 8 and Suomi-NPP satellites, which will provide information on fire fuels, active fires, aerosols and climate: all pieces of the wildfire puzzle.

For NASA's smoke and fires website, visit: http://www.nasa.gov/fires

Rani Gran
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Rani Gran | EurekAlert!
Further information:
http://www.nasa.gov/fires
http://www.nasa.gov/content/goddard/nasa-fire-towers-in-space-watch-for-wildfires-on-the-rise/#.UgVMynf3Mg9

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>