Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanodiamonds Are Forever

28.08.2014

A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents

Most of North America’s megafauna — mastodons, short-faced bears, giant ground sloths, saber-toothed cats and American camels and horses — disappeared close to 13,000 years ago at the end of the Pleistocene period. The cause of this massive extinction has long been debated by scientists who, until recently, could only speculate as to why.

A group of scientists, including UC Santa Barbara’s James Kennett, professor emeritus in the Department of Earth Science, posited that a comet collision with Earth played a major role in the extinction. Their hypothesis suggests that a cosmic-impact event precipitated the Younger Dryas period of global cooling close to 12,800 years ago.

This cosmic impact caused abrupt environmental stress and degradation that contributed to the extinction of most large animal species then inhabiting the Americas. According to Kennett, the catastrophic impact and the subsequent climate change also led to the disappearance of the prehistoric Clovis culture, known for its big game hunting, and to human population decline.

In a new study published this week in the Journal of Geology, Kennett and an international group of scientists have focused on the character and distribution of nanodiamonds, one type of material produced during such an extraterrestrial collision.

The researchers found an abundance of these tiny diamonds distributed over 50 million square kilometers across the Northern Hemisphere at the Younger Dryas boundary (YDB). This thin, carbon-rich layer is often visible as a thin black line a few meters below the surface.

Kennett and investigators from 21 universities in six countries investigated nanodiamonds at 32 sites in 11 countries across North America, Europe and the Middle East. Two of the sites are just across the Santa Barbara Channel from UCSB: one at Arlington Canyon on Santa Rosa Island, the other at Daisy Cave on San Miguel Island.

“We conclusively have identified a thin layer over three continents, particularly in North America and Western Europe, that contain a rich assemblage of nanodiamonds, the production of which can be explained only by cosmic impact,” Kennett said. “We have also found YDB glassy and metallic materials formed at temperatures in excess of 2200 degrees Celsius, which could not have resulted from wildfires, volcanism or meteoritic flux, but only from cosmic impact.”

The team found that the YDB layer also contained larger than normal amounts of cosmic impact spherules, high-temperature melt-glass, grapelike soot clusters, charcoal, carbon spherules, osmium, platinum and other materials. But in this paper the researchers focused their multi-analytical approach exclusively on nanodiamonds, which were found in several forms, including cubic (the form of diamonds used in jewelry) and hexagonal crystals.

“Different types of diamonds are found in the YDB assemblages because they are produced as a result of large variations in temperature, pressure and oxygen levels associated with the chaos of an impact,” Kennett explained. “These are exotic conditions that came together to produce the diamonds from terrestrial carbon; the diamonds did not arrive with the incoming meteorite or comet.”

Based on multiple analytical procedures, the researchers determined that the majority of the materials in the YDB samples are nanodiamonds and not some other kinds of minerals. The analysis showed that the nanodiamonds consistently occur in the YDB layer over broad areas.

“There is no known limit to the YDB strewnfield which currently covers more than 10 percent of the planet, indicating that the YDB event was a major cosmic impact,” Kennett said. “The nanodiamond datum recognized in this study gives scientists a snapshot of a moment in time called an isochron.”

To date, scientists know of only two layers in which more than one identification of nanodiamonds has been found: the YDB 12,800 years ago and the well-known Cretaceous-Tertiary boundary 65 million years ago, which is marked by the mass extinction of the dinosaurs, ammonites and many other groups.

“The evidence we present settles the debate about the existence of abundant YDB nanodiamonds,” Kennett said. “Our hypothesis challenges some existing paradigms within several disciplines, including impact dynamics, archaeology, paleontology and paleoceanography/paleoclimatology, all affected by this relatively recent cosmic impact.”


The solid line defines the current known limits of the Younger Dryas Boundary field of cosmic-impact proxies, spanning 50 million square kilometers.

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014368/nanodiamonds-are-forever

Further reports about: Earth collision diamonds extinction materials nanodiamonds platinum wildfires

More articles from Earth Sciences:

nachricht First Eastern Pacific tropical depression runs ahead of dawn
29.05.2015 | NASA/Goddard Space Flight Center

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>