Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious Midcontinent Rift is a Geological Hybrid

17.10.2014

Evolution of 2,000-mile-long underground crack occurred in three stages

An international team of geologists has a new explanation for how the Midwest’s biggest geological feature -- an ancient and giant 2,000-mile-long underground crack that starts in Lake Superior and runs south to Oklahoma and to Alabama -- evolved.


The volcanic rocks of the 1.1 billion-year-old Midcontinent Rift play a prominent role in the natural beauty of Isle Royale National Park in Lake Superior.

Scientists from Northwestern University, the University of Illinois at Chicago (UIC), the University of Gottingen in Germany and the University of Oklahoma report that the 1.1 billion-year-old Midcontinent Rift is a geological hybrid, having formed in three stages: it started as an enormous narrow crack in the Earth’s crust; that space then filled with an unusually large amount of volcanic rock; and, finally, the igneous rocks were forced to the surface, forming the beautiful scenery seen today in the Lake Superior area of the Upper Midwest.

The rift produced some of the Midwest’s most interesting geology and scenery, but there has never been a good explanation for what caused it. Inspired by vacations to Lake Superior, Seth and Carol A. Stein, a husband-and-wife team from Northwestern and UIC, have been determined to learn more in recent years.

Their study, which utilized cutting-edge geologic software and seismic images of rock located below the Earth’s surface in areas of the rift, will be presented Oct. 20 at the Geological Society of America annual meeting in Vancouver.

“The Midcontinent Rift is a very strange beast,” said the study’s lead author, Carol Stein, professor of Earth and Environmental Sciences at UIC. “Rifts are long, narrow cracks splitting the Earth’s crust, with some volcanic rocks in them that rise to fill the cracks. Large igneous provinces, or LIPs, are huge pools of volcanic rocks poured out at the Earth’s surface. The Midcontinent Rift is both of these -- like a hybrid animal.”

“Geologists call it a rift because it’s long and narrow,” explained Seth Stein, a co-author of the study, “but it’s got much more volcanic rock inside it than any other rift on a continent, so it’s also a LIP. We’ve been wondering for a long time how this could have happened.” He is the William Deering Professor of Geological Sciences at the Weinberg College of Arts and Sciences.

This question is one of those that EarthScope, a major National Science Foundation program involving geologists from across the U.S., seeks to answer. In this case, the team used images of the Earth at depth from seismic experiments across Lake Superior and EarthScope surveys of other parts of the Midcontinent Rift. The images show the rock layers at depth, much as X-ray photos show the bones in people’s bodies.

In reviewing the images, the researchers found the Midcontinent Rift appeared to evolve in three stages.

“First, the rocks were pulled apart, forming a rift valley,” Carol Stein said. “As the rift was pulling apart, magma flowed into the developing crack. After about 10 million years, the crack stopped growing, but more magma kept pouring out on top. Older magma layers sunk under the weight of new magma, so the hole kept deepening. Eventually the magma ran out, leaving a large igneous province -- a 20-mile-thick pile of volcanic rocks. Millions of years later, the rift got squeezed as a new supercontinent reassembled, which made the Earth’s crust under the rift thicker.”

To test this idea, the Steins turned to Jonas Kley, professor of geology at Germany’s Gottingen University, their host during a research year in Germany sponsored by the Alexander von Humboldt Foundation.

Kley used software that allows geologic time to run backwards. “We start with the rocks as they are today,” Kley explained, “and then undo movement on faults and vertical movements. It’s like reconstructing a car crash. When we’re done we have a picture of what happened and when. This lets us test ideas and see if they work.”

Kley’s analysis showed that the three-stage history made sense -- the Midcontinent Rift started as a rift and then evolved into a large igneous province. The last stage brought rocks in the Lake Superior area to the surface.

Other parts of the picture fit together nicely, the Steins said. David Hindle, also from Gottingen University, used a computer model to show that the rift’s shape seen in the seismic images results from the crust bending under weight of magma.

Randy Keller, a professor and director of the Oklahoma Geological Survey, found that the weight of the dense magma filling the rift explains the stronger pull of gravity measured above the rift. He points out that these variations in the gravity field are the major evidence used to map the extent of the rift.

“It’s funny,” Seth Stein mused. “Carol and I have been living in Chicago for more than 30 years. We often have gone up to Lake Superior for vacations but didn’t think much about the geology. It’s only in the past few years that we realized there’s a great story there and started working on it. There are many studies going on today, which will give more results in the next few years.”

The Steins now are working with other geologists to help park rangers and teachers tell this story to the public. For example, a good way to think about how rifts work is to observe what happens if you pull both ends of a Mars candy bar: the top chocolate layer breaks, and the inside stretches.

“Sometimes people think that exciting geology only happens in places like California,” Seth Stein said. “We hope results like this will encourage young Midwesterners to study geology and make even further advances.”

Megan Fellman | Eurek Alert!
Further information:
http://www.northwestern.edu/newscenter/stories/2014/10/mysterious-midcontinent-rift-is-a-geological-hybrid.html

More articles from Earth Sciences:

nachricht Improved monitoring of coral reefs with the HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

nachricht Hidden river once flowed beneath Antarctic ice
22.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>