Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious features spotted on Titan reveal the moon's seasonal changes, says Stanford scientist

30.06.2014

Bright spots in a large lake on Titan suggest that Saturn's largest moon supports processes similar to Earth's water cycle, says Howard Zebker.

At first glance, Titan has little in common with Earth. The largest moon of Saturn, temperatures on Titan's surface dip nearly 300 F below zero, its seas slosh with liquid methane, and its sky is a murky shade of creamsicle.


Using data collected by Cassini's radar instruments, scientists have observed changes in Titan's liquid methane lakes and seas that indicate the moon experiences seasonal changes. (Image: NASA/JPL-Caltech)

And yet, fresh analysis of mysterious features spotted on the moon indicates that it experiences one of the same global processes that is important here on Earth.

In a study published in the latest issue of Nature Geoscience, scientists operating the Cassini satellite, including Stanford's Howard Zebker, present evidence that Titan has seasonal cycles analogous to Earth's, and that the moon's surface conditions change as the Titan year unfolds.

The Cassini satellite has been orbiting Saturn and its moons since 2004. Zebker, a professor of electrical engineering and of geophysics, is one of the lead scientists operating the spacecraft's radar instruments. Radar is critical for studying Titan in particular because the moon's atmosphere is typically too cloudy and thick for optical instruments to see through easily.

During five fly-bys of Titan's Ligeia Mare – a liquid methane sea larger than Lake Superior – the scientists noticed bright features that appeared and changed shape on the sea's surface. After ruling out a technical glitch or an exotic artifact of radar scattering, the group focused on three causes most likely for the phenomena.

"We are driven to use our imaginations and picture what could be happening on the sea to produce a transient feature," Zebker said.

One such explanation could involve low-density solids that usually sink below the surface – much like silt in a river delta – but then rise and clump together. Unlike ice on Earth, frozen methane is denser than its liquid phase, so it sinks instead of floats. "On Earth, ice floats and we get icebergs," Zebker said. "On Titan, icebergs would sink."

Seasonal temperature changes could account for the appearance and disappearance of these solids, as they might be released from the bottom and rise to the surface in warmer temperatures.

A second explanation involves bubbles. As summer temperatures warm the sea, bubbles trapped by the sunken frozen material could be released and float to the surface.

Finally, the bright features could be cresting waves, whipped up by summer winds.

"Waves are usually not visible on Titan, but in this case the onset of the summer season may create a more turbulent atmosphere," Zebker said. "On Earth we see this effect as the ocean warms and we start a new hurricane season."

A global cycle

All together, the observation and the possible explanations suggest that Titan's surface changes seasonally. They also support the idea that liquid methane might flow and evaporate in response to changing exposure to sunlight, in much the same way that water cycles through various systems on Earth.

Liquid methane lakes and seas have been observed on Titan's surface, and the atmosphere appears to carry methane and ethane similar to the way that Earth's atmosphere transports water vapor, Zebker said, and so scientists can expect Titan to have variations in liquid methane, ethane and other hydrocarbons driven by changes in temperature and sunlight.

As with any discovery that compares an alien world to Earth, the question of "Can it support life?" must be addressed. Although a dynamic process like the methane cycle and seasons go hand-in-hand with life on Earth, Zebker said that this discovery didn't significantly increase the chances that this moon of Saturn might support life.

"If there is sufficient energy pumped into Titan's atmosphere and surface from the sun, then it is possible that this would spawn evolution of life forms that take advantage of the energy source," Zebker said. "It would be very different life than on Earth, as it is minus 292 degrees Fahrenheit most of the time. Still, Titan remains one of the best places for life to evolve in the solar system."

Media Contact

Howard Zebker, Electrical Engineering and Geophysics: zebker@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Howard Zebker | Eurek Alert!
Further information:
http://news.stanford.edu/news/2014/june/titan-moon-seasons-062614.html

Further reports about: Cassini Earth Geophysics Geoscience Saturn Superior Titan atmosphere bubbles satellite temperature waves

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>