Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious features spotted on Titan reveal the moon's seasonal changes, says Stanford scientist

30.06.2014

Bright spots in a large lake on Titan suggest that Saturn's largest moon supports processes similar to Earth's water cycle, says Howard Zebker.

At first glance, Titan has little in common with Earth. The largest moon of Saturn, temperatures on Titan's surface dip nearly 300 F below zero, its seas slosh with liquid methane, and its sky is a murky shade of creamsicle.


Using data collected by Cassini's radar instruments, scientists have observed changes in Titan's liquid methane lakes and seas that indicate the moon experiences seasonal changes. (Image: NASA/JPL-Caltech)

And yet, fresh analysis of mysterious features spotted on the moon indicates that it experiences one of the same global processes that is important here on Earth.

In a study published in the latest issue of Nature Geoscience, scientists operating the Cassini satellite, including Stanford's Howard Zebker, present evidence that Titan has seasonal cycles analogous to Earth's, and that the moon's surface conditions change as the Titan year unfolds.

The Cassini satellite has been orbiting Saturn and its moons since 2004. Zebker, a professor of electrical engineering and of geophysics, is one of the lead scientists operating the spacecraft's radar instruments. Radar is critical for studying Titan in particular because the moon's atmosphere is typically too cloudy and thick for optical instruments to see through easily.

During five fly-bys of Titan's Ligeia Mare – a liquid methane sea larger than Lake Superior – the scientists noticed bright features that appeared and changed shape on the sea's surface. After ruling out a technical glitch or an exotic artifact of radar scattering, the group focused on three causes most likely for the phenomena.

"We are driven to use our imaginations and picture what could be happening on the sea to produce a transient feature," Zebker said.

One such explanation could involve low-density solids that usually sink below the surface – much like silt in a river delta – but then rise and clump together. Unlike ice on Earth, frozen methane is denser than its liquid phase, so it sinks instead of floats. "On Earth, ice floats and we get icebergs," Zebker said. "On Titan, icebergs would sink."

Seasonal temperature changes could account for the appearance and disappearance of these solids, as they might be released from the bottom and rise to the surface in warmer temperatures.

A second explanation involves bubbles. As summer temperatures warm the sea, bubbles trapped by the sunken frozen material could be released and float to the surface.

Finally, the bright features could be cresting waves, whipped up by summer winds.

"Waves are usually not visible on Titan, but in this case the onset of the summer season may create a more turbulent atmosphere," Zebker said. "On Earth we see this effect as the ocean warms and we start a new hurricane season."

A global cycle

All together, the observation and the possible explanations suggest that Titan's surface changes seasonally. They also support the idea that liquid methane might flow and evaporate in response to changing exposure to sunlight, in much the same way that water cycles through various systems on Earth.

Liquid methane lakes and seas have been observed on Titan's surface, and the atmosphere appears to carry methane and ethane similar to the way that Earth's atmosphere transports water vapor, Zebker said, and so scientists can expect Titan to have variations in liquid methane, ethane and other hydrocarbons driven by changes in temperature and sunlight.

As with any discovery that compares an alien world to Earth, the question of "Can it support life?" must be addressed. Although a dynamic process like the methane cycle and seasons go hand-in-hand with life on Earth, Zebker said that this discovery didn't significantly increase the chances that this moon of Saturn might support life.

"If there is sufficient energy pumped into Titan's atmosphere and surface from the sun, then it is possible that this would spawn evolution of life forms that take advantage of the energy source," Zebker said. "It would be very different life than on Earth, as it is minus 292 degrees Fahrenheit most of the time. Still, Titan remains one of the best places for life to evolve in the solar system."

Media Contact

Howard Zebker, Electrical Engineering and Geophysics: zebker@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Howard Zebker | Eurek Alert!
Further information:
http://news.stanford.edu/news/2014/june/titan-moon-seasons-062614.html

Further reports about: Cassini Earth Geophysics Geoscience Saturn Superior Titan atmosphere bubbles satellite temperature waves

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>