Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple Magma Reservoirs Affect Volcanic Eruption Cycles

13.10.2008
Discovering what happens beneath an active volcano is a job that’s often too hot for researchers to handle, but a University of Arkansas scientist and his colleagues have created a new and better way to “look” at what’s going on in the molten magma that lies beneath a volcano’s surface.

Their model not only reaches some interesting conclusions, but also allows the researchers to make a prediction as to what the system will do over time.

Glen Mattioli, professor of geosciences at the University of Arkansas; Derek Elsworth and Barry Voight, professors at Penn State University; graduate student Joshua Taron of Penn State University and professor Richard Herd of the University of East Anglia in Norwich, England, published their findings Thursday, Oct. 9, in the journal Science.

“Nobody has done this before,” said Mattioli. “This methodology could be significant for volcanic systems elsewhere.”

For the first time, researchers have linked together measurements from satellite geodetic data obtained via the global positioning system and from lava flux, which indicates the volume of material emerging from the earth’s crust over time. They did so using 10 years of continuous data from the Soufrière Hills Volcano on the island of Montserrat in the Caribbean, thanks to funding from the National Science Foundation. This meant they were able to look at three different dome-building periods and the movements and magma flow that accompanied them.

The prolonged eruption on Montserrat, which began in 1995, drove away more than half of the island's 11,000 inhabitants, killed the tourism industry and buried the airport in a pyroclastic flow. The island has become a living observatory for researchers who want to learn more about active volcanoes.

The data suggest that two interconnected magma chambers lie beneath the surface of the volcano on Montserrat – one six kilometers below the surface and the other at 12 kilometers below the surface. They also show a link between surface behavior and the size of the deeper magma chamber.

“In pauses, the deep chamber is inflating. The shallow one is not doing much of anything,” said Mattioli, who teaches in the J. William Fulbright College of Arts and Sciences.

The deep chamber grows in volume when there is no flux of material to the surface, and shrinks in volume when magma emerges on the earth’s surface; the upper chamber shows no such ties. This suggests that there must be some kind of valve mechanism operating between the upper and lower chambers, Mattioli said.

“We don’t yet understand why this valve exists and what may control when it opens and shuts,” Mattioli said. The next step will be to look for the physical mechanisms at work in the processes taking place between the chambers and the surface.

The researchers also determined that the flux into the base of the system, below the magma chambers, remained fairly constant over time – a few cubic meters of material per second. Therefore, it appears that the magma chambers, not the system base, drive the eruption cycle.

Because they have been able to examine the volcano through a decade of its eruptive cycle, the researchers were able to see volume changes in the lower magma chamber over time.

“Because we have all this data, we can make a prediction as to what is going on in the system as a function of time,” Mattioli said. The data follow a decay curve that has the scientists predicting that this particular volcanic cycle is coming to an end, if the system is not reinvigorated.

CONTACTS:
Glen Mattioli, professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-7295, mattioli@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>