Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple Magma Reservoirs Affect Volcanic Eruption Cycles

13.10.2008
Discovering what happens beneath an active volcano is a job that’s often too hot for researchers to handle, but a University of Arkansas scientist and his colleagues have created a new and better way to “look” at what’s going on in the molten magma that lies beneath a volcano’s surface.

Their model not only reaches some interesting conclusions, but also allows the researchers to make a prediction as to what the system will do over time.

Glen Mattioli, professor of geosciences at the University of Arkansas; Derek Elsworth and Barry Voight, professors at Penn State University; graduate student Joshua Taron of Penn State University and professor Richard Herd of the University of East Anglia in Norwich, England, published their findings Thursday, Oct. 9, in the journal Science.

“Nobody has done this before,” said Mattioli. “This methodology could be significant for volcanic systems elsewhere.”

For the first time, researchers have linked together measurements from satellite geodetic data obtained via the global positioning system and from lava flux, which indicates the volume of material emerging from the earth’s crust over time. They did so using 10 years of continuous data from the Soufrière Hills Volcano on the island of Montserrat in the Caribbean, thanks to funding from the National Science Foundation. This meant they were able to look at three different dome-building periods and the movements and magma flow that accompanied them.

The prolonged eruption on Montserrat, which began in 1995, drove away more than half of the island's 11,000 inhabitants, killed the tourism industry and buried the airport in a pyroclastic flow. The island has become a living observatory for researchers who want to learn more about active volcanoes.

The data suggest that two interconnected magma chambers lie beneath the surface of the volcano on Montserrat – one six kilometers below the surface and the other at 12 kilometers below the surface. They also show a link between surface behavior and the size of the deeper magma chamber.

“In pauses, the deep chamber is inflating. The shallow one is not doing much of anything,” said Mattioli, who teaches in the J. William Fulbright College of Arts and Sciences.

The deep chamber grows in volume when there is no flux of material to the surface, and shrinks in volume when magma emerges on the earth’s surface; the upper chamber shows no such ties. This suggests that there must be some kind of valve mechanism operating between the upper and lower chambers, Mattioli said.

“We don’t yet understand why this valve exists and what may control when it opens and shuts,” Mattioli said. The next step will be to look for the physical mechanisms at work in the processes taking place between the chambers and the surface.

The researchers also determined that the flux into the base of the system, below the magma chambers, remained fairly constant over time – a few cubic meters of material per second. Therefore, it appears that the magma chambers, not the system base, drive the eruption cycle.

Because they have been able to examine the volcano through a decade of its eruptive cycle, the researchers were able to see volume changes in the lower magma chamber over time.

“Because we have all this data, we can make a prediction as to what is going on in the system as a function of time,” Mattioli said. The data follow a decay curve that has the scientists predicting that this particular volcanic cycle is coming to an end, if the system is not reinvigorated.

CONTACTS:
Glen Mattioli, professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-7295, mattioli@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>