Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple factors, including climate change, led to collapse and depopulation of ancient Maya

22.08.2012
A new analysis of complex interactions between humans and the environment preceding the 9th century collapse and abandonment of the Central Maya Lowlands in the Yucatán Peninsula points to a series of events — some natural, like climate change; some human-made, including large-scale landscape alterations and shifts in trade routes — that have lessons for contemporary decision-makers and sustainability scientists.

In their revised model of the collapse of the ancient Maya, social scientists B.L. "Billie" Turner and Jeremy "Jerry" A. Sabloff provide an up-to-date, human-environment systems theory in which they put together the degree of environmental and economic stress in the area that served as a trigger or tipping point for the Central Maya Lowlands.


This map shows the Central Maya Lowlands with sites mentioned in the perspective by B.L. Turner of Arizona State University and Jeremy A. Sabloff of the Santa Fe Institute published Aug. 21 in the early edition of the Proceedings of the National Academy of Sciences.

Credit: Barbara Trapido-Lurie/Arizona State University

The co-authors described the Classic Period of the Lowland Maya (CE 300-800) as a "highly complex civilization organized into networks of city-states," in their perspective article published Aug. 21 in the online Early Edition of the Proceedings of the National Academy of Sciences.

The ancient Maya in this hilly and riverless region confronted long-term climatic aridification, experienced decadal to century-level or longer droughts amplified by the landscape changes that they made, including large-scale deforestation indicated in the paleoecological record.

Previous to the collapse, the Maya occupied the area for more than 2,000 years, noted the authors, "a time in which they developed a sophisticated understanding of their environment, built and sustained intensive production [and water] systems, and withstood at least two long-term episodes of aridity."

They document the human-environment interactions that were severely stressed during the 9th century arid phase. "This environmental stress was complemented by a shift in commercial trade from across the peninsula to around it, which reduced the economy of the ruling elite to keep up the livelihood infrastructure to prevent the tipping point," said Turner, a Distinguished Sustainability Scientist with the Global Institute of Sustainability at Arizona State University.

"The decision was made to vacate the central lowlands rather than maintain the investment. This theory is not only consistent with the data on collapse but on the failure of the central lowlands to be reoccupied subsequently," said Turner.

"It acknowledges the role of climate change and anthropogenic environmental change, while also recognizing the role of commerce and choice," he said.

Co-author Sabloff noted that rather than a monolithic period of collapse, there were many variable patterns, which is consistent with the thesis Turner and he advance.

"The only way to explain the variability is to take a complex systems view," said Sabloff, president of the Santa Fe Institute.

"The Maya case lends insights for the use of paleo- and historical analogs to inform contemporary global environment change and sustainability," wrote the authors. "Balance between the extremes of generalization and context is required.

"Climate change, specifically aridity, was an important exogenous forcing on human-environment conditions throughout the Maya Lowlands," they concluded. "Complex system interactions generated the collapse and depopulation of the (Central Maya Lowlands) and fostered its long-term abandonment. This lesson — increasingly voiced in the literature — should be heeded in the use of analogs for sustainability science."

In addition to his role as a Distinguished Sustainability Scientist with ASU's Global Institute of Sustainability, B. L. "Billie" Turner is the Gilbert F. White Professor of Environment and Society in the School of Geographical Sciences and Urban Planning, an academic unit in the College of Liberal Arts and Sciences, and teaches in ASU's School of Sustainability. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

Archeologist Jeremy "Jerry" A. Sabloff heads up the Santa Fe Institute, a nonprofit research center that seeks improved scientific understanding of complex adaptive systems in nature and human society. He is a member of the National Academy of Sciences and the American Philosophical Society.

The reference DOI for the article titled "Classic Period collapse of the Central Maya Lowlands: Insights about human-environment relationship for sustainability," is 10.1073/pnas.1210106109.

Arizona State University
Global Institute of Sustainability
School of Sustainability
School of Geographical Sciences and Urban Planning
College of Liberal Arts and Sciences
Tempe, Arizona USA

Carol Hughes | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: Academy Arts and Sciences Climate change Liberal Lowland Maya geographical

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>