Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multibeam sonar can map undersea gas seeps

07.10.2011
A technology commonly used to map the bottom of the deep ocean can also detect gas seeps in the water column with remarkably high fidelity, according to scientists from the University of New Hampshire and the National Oceanic and Atmospheric Administration (NOAA).

This finding, made onboard the NOAA ship Okeanos Explorer in the Gulf of Mexico, will lead to more effective mapping of these gas seeps and, ultimately, enhanced understanding of our ocean environments.


This is a perspective of the seafloor showing preliminary results of gas seeps detected by multibeam sonar in vicinity of Biloxi Dome in Northern Gulf of Mexico. Gas seep locations are shown as blue dots and are overlaid on the seafloor bathymetry that was collected. Credit: Image produced by the University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center using IVS Fledermaus software.

The mapping technology, multibeam sonar, is an echo-sounding technology that surveys a wide, fan-shaped swath of the seafloor, providing much greater coverage than the single-beam sonar systems previously used to map seeps. "We wanted to see whether we could map a large area of gaseous seeps effectively using this technology, and how well the multibeam sonar compared to our very sensitive single-beam sonars," says Tom Weber of UNH's Center for Coastal Mapping, who was lead scientist of this mission. "It turns out it works wonderfully." The multibeam sonar on the Okeanos Explorer produced data to make high-resolution maps of gas in the water column in depths ranging from 3,000 to 7,000 feet.

Working jointly with scientists and technicians from NOAA's Office of Ocean Exploration and Research (OER) and the Bureau of Ocean Energy Management (BOEM), Weber and colleagues mapped more than 17,000 square kilometers of the Gulf of Mexico from Aug. 22 through Sept. 10, 2011.

Sonar finds features on the ocean floor much the way a bat tracks its dinner: "It's an acoustic wave hitting the target and reflecting back," says Weber. Multibeam sonar sends those sound waves in many directions at the same time, enabling it to "see" a swath of targets that is much wider than what would be observed with a single-beam sonar. While it's known to be an effective tool for mapping large, stable items like the bottom of the ocean, it wasn't designed to detect targets within the water column.

Gas seeps – primarily but not exclusively methane – are numerous in the Gulf of Mexico, emanating from natural fissures in the seafloor. They can be associated with oil, but oil was not the focus for Weber and his collaborators. Finding and mapping gaseous seeps, says Weber, helps scientists better understand the ocean: its methane fluxes, carbon cycle, and deep-water marine environments.

Further, the Gulf of Mexico is home to many active oil-drilling sites, and mapping the gaseous seeps in the water column will inform scientific as well as regulatory decisions. "In the deep ocean, there are life forms like tubeworms and clams associated with gas seeps, and they're treated as protected resources," Weber says.

Further, mapping these seeps will give researchers baseline data on what exists in the water column, helping them determine whether future seeps are natural or unwanted byproducts of drilling.

"Mapping the seafloor and the water column are essential first steps in exploring our largely unknown ocean," says Weber. "This expedition confirms earlier indications that multibeam technology provides a valuable new tool in the inventory to detect plumes of gas in the water column, and especially in deep water."

Also on the mission from UNH were CCOM research scientist Jonathan Beaudoin and graduate students Kevin Jerram (pursuing an M.S. in ocean engineering) and Maddie Schroth-Miller (pursuing an M.S. in applied mathematics). NOAA's expedition coordinator and lead NOAA scientist on the mission was Mashkoor Malik, who graduated from UNH in 2005 with a M.S. in ocean mapping.

NOAA Ship Okeanos Explorer is operated, managed and maintained by NOAA's Office of Marine and Aviation Operations, which includes commissioned officers of the NOAA Corps and civilian wage mariners. NOAA's OER owns and is responsible for operating and managing the cutting-edge ocean exploration systems on the vessel. It is the only federal ship dedicated to systematic exploration of the planet's largely unknown ocean.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Images available to download:

http://www.unh.edu/news/cj_nr/2011/oct/bp06noaa_01.jpg
Caption: A perspective of the seafloor showing preliminary results of gas seeps detected by multibeam sonar in vicinity of Biloxi Dome in Northern Gulf of Mexico. Gas seep locations are shown as blue dots and are overlaid on the seafloor bathymetry that was collected.

Credit: Image produced by the University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center using IVS Fledermaus software.

http://www.unh.edu/news/cj_nr/2011/oct/bp06noaa_02.jpg
Caption: A view of the multibeam sonar water column backscatter data used to detect gas seeps. Gas seeps derived from the sonar are shown in the foreground.

Credit: Image produced by the University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center using IVS Fledermaus software.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>