Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster researchers provide evidence of liquid water on Mars

28.04.2010
There is still liquid water on Mars – at least, at certain times of the year – and a team of researchers from Münster University’s Institute of Planetology, led by Dr. Dennis Reiss, have demonstrated it.

The team has evaluated high-res pictures from the American space probe "Mars Reconnaissance Orbiter" (MRO) and they show that on the surface of the planet a gully about two metres wide, caused by erosion, has increased in length.

Between November 2006 and May 2009 it lengthened by around 170 metres. “The changes to the gully – especially in its length – are the result of small quantities of water ice melting in spring and the subsequent flow movements of a mixture of water and sand,” is the researchers’ conclusion.

The annual mean temperature on Mars is around minus 60 degrees Celsius, but towards the end of winter it rises and can go above zero. Then, changes on the surface of Mars can be seen. Black areas on the dunes point to carbon dioxide ice which is either thawing or changing directly from a solid to a gaseous state, i.e. undergoing sublimation. In the spring of the first observed year on Mars – a year there lasts 687 days – a small gully caused by erosion in the so-called Russell Crater grew by about 50 metres in length. This was repeated in the spring of the following Mars year. The gully lengthened down the slope by about 120 metres.

... more about:
»Crater »Mars »Planetology »carbon dioxide »water ice

How could these gullies develop? Possible explanations are movements of dry masses or the transportation of dry material influenced by liquid carbon dioxide or liquid water. “We can definitely rule out movements of dry masses due to the morphological characteristics of the canals,” says Dennis Reiss. Also, the gullies show one special feature, namely that become thinner and thinner down the slope. This is a general indication of the fact that some liquid seeping into the soil is likely to be responsible for the development. Carbon dioxide becoming liquid for a short time is ruled out by the researchers. “Evaluation of the spectral data shows that in both years all the carbon dioxide ice had already undergone sublimation before the canal arose,” says PhD student Gino Erkeling.

The most likely explanation in the opinion of the researchers is a small quantity of melting water ice which is protected from sublimation by an overlying layer of carbon dioxide ice. The calculations made by the Münster researchers show that the surface temperatures in the Russell Crater at the beginning of spring rise above the freezing point for water. PhD student Karin Bauch is certain that “the carbon dioxide ice – and subsequently the water ice underneath – then begin to melt and there would be a possibility of liquid water on the surface for a short time.” When the water then flows down the slope and collects in gullies, erosion is the result. Moreover, the phases of erosion in both years are almost identical, which leads to the conclusion that it is seasonal effects which are responsible.

Prof. Harald Hiesinger, the Director of the Institute of Planetology at Münster University, is also impressed by the fact that there were changes to the gullies over the past years. “These observations,” he says, “are the clearest evidence so far that today water can still flow on the surface of Mars, and in a quantity that is sufficient to cause erosion.” However, only small gullies are made. “The climate on Mars today only allows very little air humidity which can settle on the surface as frost. The quantities which can melt and lead to liquid water are correspondingly small,” explains Dennis Reiss. “So it’s not enough to make large valleys such as were formed in the early years of Mars.”

Reference: Reiss D. et al. (2010): Evidence for present day gully activity on the Russell crater dune field, Mars. GEOPHYSICAL RESEARCH LETTERS, VOL. 37, doi:10.1029/2009GL042192

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.agu.org/journals/gl/gl1006/2009GL042192/2009GL042192.pdf

Further reports about: Crater Mars Planetology carbon dioxide water ice

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>