Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher Says the Next Large Central US Earthquake May Not Be In New Madrid

09.02.2011
2000 years of Chinese records shows migrating mid-continent earthquakes

This December marks the bicentennial of the New Madrid earthquakes of 1811-12, which are the biggest earthquakes known to have occurred in the central U.S.

Now, based on the earthquake record in China, a University of Missouri researcher says that mid-continent earthquakes tend to move among fault systems, so the next big earthquake in the central U.S. may actually occur someplace else other than along the New Madrid faults.

Mian Liu, professor of geological sciences in the College of Arts and Science at MU, examined records from China, where earthquakes have been recorded and described for the past 2,000 years. Surprisingly, he found that during this time period big earthquakes have never occurred twice in the same place.

“In North China, where large earthquakes occur relatively frequently, not a single one repeated on the same fault segment in the past two thousand years,” Liu said. “So we need to look at the ‘big picture’ of interacting faults, rather than focusing only on the faults where large earthquakes occurred in the recent past.”

Mid-continent earthquakes, such as the ones that occurred along the New Madrid faults, occur on a complicated system of interacting faults spread throughout a large region. A large earthquake on one fault can increase the stress on other faults, making some of them more likely to have a major earthquake. The major faults may stay dormant for thousands of years and then wake up to have a short period of activity.

Along with co-authors Seth Stein, a professor of earth and planetary sciences at Northwestern University, and Hui Wang, a Chinese Earthquake Administration researcher, Liu believes this discovery will provide valuable information about the patterns of earthquakes in the central and eastern United States, northwestern Europe, and Australia. The results have been published in the journal Lithosphere.

“The New Madrid faults in the central U.S., for example, had three to four large events during 1811-12, and perhaps a few more in the past thousand years. This led scientists to believe that more were on the way,” Stein said. “However, high-precision Global Positioning System (GPS) measurements in the past two decades have found no significant strain in the New Madrid area. The China results imply that the major earthquakes at New Madrid may be ending, as the pressure will eventually shift to another fault.”

While this study shows that mid-continent earthquakes seem to be more random than previously thought, the researchers believe it actually helps them better understand these seismic events.

“The rates of earthquake energy released on the major fault zones in North China are complementary,” Wang said. “Increasing seismic energy release on one fault zone was accompanied by decreasing energy on the others. This means that the fault zones are coupled mechanically.”

Studying fault coupling with GPS measurements, earthquake history, and computer simulation will allow the scientists to better understand the mysterious mid-continent earthquakes.

“What we’ve discovered about mid-continent earthquakes won’t make forecasting them any easier, but it should help,” Liu said.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>