Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain on Mars may answer big question

06.03.2009
Rice study hints at water – and life – under Olympus Mons

The Martian volcano Olympus Mons is about three times the height of Mount Everest, but it's the small details that Rice University professors Patrick McGovern and Julia Morgan are looking at in thinking about whether the Red Planet ever had – or still supports – life.

Using a computer modeling system to figure out how Olympus Mons came to be, McGovern and Morgan reached the surprising conclusion that pockets of ancient water may still be trapped under the mountain.
Their research is published in February's issue of the journal Geology.

The scientists explained that their finding is more implication than revelation. "What we were analyzing was the structure of Olympus Mons, why it's shaped the way it is," said McGovern, an adjunct assistant professor of Earth science and staff scientist at the NASA-affiliated Lunar and Planetary Institute. "What we found has implications for life – but implications are what go at the end of a paper."

Co-author Morgan is an associate professor of Earth science.

In modeling the formation of Olympus Mons with an algorithm known as particle dynamics simulation, McGovern and Morgan determined that only the presence of ancient clay sediments could account for the volcano's asymmetric shape. The presence of sediment indicates water was or is involved.

Olympus Mons is tall, standing almost 15 miles high, and slopes gently from the foothills to the caldera, a distance of more than 150 miles. That shallow slope is a clue to what lies beneath, said the researchers. They suspect if they were able to stand on the northwest side of Olympus Mons and start digging, they'd eventually find clay sediment deposited there billions of years ago, before the mountain was even a molehill.

The European Space Agency's Mars Express spacecraft has in recent years found abundant evidence of clay on Mars. This supports a previous theory that where Olympus Mons now stands, a layer of sediment once rested that may have been hundreds of meters thick.

Morgan and McGovern show in their computer models that volcanic material was able to spread to Olympus-sized proportions because of the clay's friction-reducing effect, a phenomenon also seen at volcanoes in Hawaii.

What may be trapped underneath is of great interest, said the researchers. Fluids embedded in an impermeable, pressurized layer of clay sediment would allow the kind of slipping motion that would account for Olympus Mons' spread-out northeast flank – and they may still be there.

Thanks to NASA's Phoenix lander, which scratched through the surface to find ice underneath the red dust last year, scientists now know there's water on Mars. So Morgan and McGovern feel it's reasonable to suspect water may be trapped in pores in the sediment underneath the mountain.

"This deep reservoir, warmed by geothermal gradients and magmatic heat and protected from adverse surface conditions, would be a favored environment for the development and maintenance of thermophilic organisms," they wrote. This brings to mind the primal life forms found deep in Earth's oceans, thriving near geothermal vents.

Finding a source of heat will be a challenge, they admitted. "We'd love to have the answer to that question," said McGovern, noting evidence of methane on Mars is considered by some to be another marker for life. "Spacecraft up there have the capability to detect a thermal anomaly, like a magma flow or a volcano, and they haven't.

"What we need is 'ground truth' – something reporting from the surface saying, 'Hey, there's a Marsquake,' or 'Hey, there's unusual emissions of gas.' Ultimately, we'd like to see a series of seismic stations so we can see what's moving around the planet."

The paper appears online in Geology at: http://geology.gsapubs.org/cgi/content/abstract/37/2/139

For another Rice graphic of this, click here. The graphic here, should be attributed to wikipedia.com.

For more information, contact David Ruth at 713-348-6327 or druth@rice.edu

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>