Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mound near lunar south pole formed by unique volcanic process

16.10.2015

A giant mound near the Moon’s south pole appears to be a volcanic structure unlike any other found on the lunar surface, according to new research.

The formation, known as Mafic Mound, stands about 800 meters (2,600 feet) tall and 75 kilometers (47 miles) across, smack in the middle of a giant impact crater known as the South Pole-Aitken Basin. This new study suggests that the mound is the result of a unique kind of volcanic activity set in motion by the colossal impact that formed the basin.


The top image is the South Pole-Aitken basin taken by the Lunar Reconnaissance Orbiter’s Wide Angle Camera.

Credit: NASA/Goddard/Arizona State University

The lower image is from the Lunar Orbiter Laser Altimeter. Mafic Mound is the reddish splotch in the middle (Red is high ground, blue is low).

Credit: NASA/Goddard/MIT/Brown University

“If the scenarios that we lay out for its formation are correct, it could represent a totally new volcanic process that’s never been seen before,” said Daniel Moriarty, a Ph.D. student in Brown University’s Department of Earth, Environmental and Planetary Sciences and the study’s lead author.

The research has been accepted for publication in Geophysical Research Letters, a publication of the American Geophysical Union.

Mafic Mound (mafic is a term for rocks rich in minerals such as pyroxene and olivine) was first discovered in the 1990s by Carle Pieters, a planetary geologist at Brown and Moriarty’s adviser. What makes it curious, other than its substantial size, is the fact that it has a different mineralogical composition than the surrounding rock. The mound is rich in high-calcium pyroxene, whereas the surrounding rock is low-calcium.

“This unusual structure at the very center of the basin begs the question: What is this thing, and might it be related to the basin formation process?” Moriarty said.

To investigate that, Moriarty and Pieters looked at a rich suite of data from multiple lunar exploration missions. They used detailed mineralogical data from the Moon Mineralogy Mapper, which flew aboard India’s Chandrayaan-1 spacecraft. NASA’s Lunar Orbiter Laser Altimeter provided precise topographic data, and data from the GRAIL mission characterized gravitational anomalies in the region.

Those combined datasets suggested that Mafic Mound was created by one of two unique volcanic processes set in motion by the giant South Pole-Aitken impact. An impact of that size would have created a cauldron of melted rock as much as 50 kilometers (30 miles) deep, some researchers think. As that sheet of impact melt cooled and crystalized, it would have shrunk. As it did, still-molten material in the middle of the melt sheet may have been squeezed out the top like toothpaste from a tube. Eventually, that erupted material may have formed the mound.

Such a process could explain the mound’s strange mineralogy. Models of how the South Pole-Aitken melt sheet may have crystalized suggest that the erupting material should be rich in high-calcium pyroxene, which is consistent with the observed mineralogy of the mound.

Another scenario that fits the data involves possible melting of the Moon’s mantle shortly after the South Pole-Aitken impact. The impact would have blasted tons of rock out of the basin, creating a low-gravity region. The lower gravity condition could have enabled the center of the basin to rebound upward. Such upward movement would have caused partial melting of mantle material, which could have erupted to form the mound.

These scenarios make for a strong fit to those very detailed datasets, Moriarty said. And if either is true, it would represent a unique process on lunar surface. Moriarty said a sample return mission to the South Pole Aitken Basin would be a great way to try to verify the results. The basin has long been an interesting mission target for lunar scientists.

“It’s the largest confirmed impact structure in the solar system and has shaped many aspects of the evolution of the Moon,” Moriarty said. “So a big topic in lunar science is studying this basin and the effects it had on the geology of the Moon through time.”

A sample return mission to the basin could bring back bits of lunar mantle, the composition of which is still not fully understood. A returned sample could also put a firm date on when the impact occurred, which could be used as a standard to date other features on the surface.

And in light of this work, a sample could also help to shed light on a unique lunar volcanic process.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065718/full

Or, you may order a copy of the final paper by emailing your request to Lauren Lipuma at llipuma@agu.org.

Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“The nature and origin of Mafic Mound in the South Pole-Aitken Basin”

Authors:
Daniel Moriarty: Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA.

Carle M. Pieters: Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA.

Contact Information for the Authors:
Daniel Moriarty: daniel_moriarty@brown.edu


AGU Contact:
Lauren Lipuma
+1 (202) 777-7396
llipuma@agu.org

Brown University Contact:
Kevin Stacey
+1 (401) 863-3766
kevin_stacey@brown.edu

Lauren Lipuma | AGU American Geophysical Union
Further information:
http://news.agu.org/press-release/mound-near-lunar-south-pole-formed-by-unique-volcanic-process/

Further reports about: American Geophysical Union Earth NASA lunar south pole lunar surface

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>