Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon formed after collision of planets

06.06.2014

Göttingen scientists confirm “Giant impact“ theory – Lunar samples analyzed at Göttingen University

Scientists from the Universities of Göttingen, Cologne, and Münster in Germany have resolved an isotopic difference between the Earth and the Moon.

The slight variation in oxygen isotopes confirms the “Giant impact“ hypothesis of Moon formation, according to which the Moon formed from the debris of a giant collision between the Earth and another proto-Planet about 4.5 billion years ago. The results were published in the journal Science.

In the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre, the scientists analyzed samples from the Moon that were provided by NASA. The lunar basalts were brought back to Earth between 1969 and 1972 with Apollo Missions 11, 12, and 16.

They released the oxygen from the rocks, purified it and measured the pure oxygen gas in the mass spectrometer. “For the first time, we were able to show a subtle difference between the rare 17O isotope and the abundant 16O isotope,” explains Dr. Daniel Herwartz, who lead the study at Göttingen University and is now employed at the University of Cologne.

“The similar isotopic composition of Earth and Moon appeared to be at odds with the giant impact hypothesis, because numerical models of the collision predicted a difference. The difference we found is smaller than initially predicted, but that might be due to the fact that both planets originated from the same region of the solar system.”

Only a few laboratories worldwide are able to measure the rare 17O isotope at all. “For the last three years, staff and students in Göttingen have persistently worked on improving the analytical procedure,” says Prof. Dr. Andreas Pack, head of the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre.

“The results of this study show that this effort has paid off.” Some of the data were measured by student Bjarne Friedrichs for his Bachelor’s thesis.

Original publication: Daniel Herwartz, Andreas Pack, Bjarne Friedrichs, Addi Bischoff. Identification of the giant impactor Theia in lunar rocks. Science 2014. Doi: 10.1126/science.1251117.

Contact:
Dr. Daniel Herwartz
University of Cologne – Environmental Isotope Geochemistry
Greinstraße 4-6, 50939 Köln, Germany
Phone +49 221 470-3240 or +49 177 319 4278
Email: d.herwartz@uni-koeln.de

Prof. Dr. Andreas Pack
University of Göttingen
Geoscience Centre – Department of Isotope Geology
Goldschmidtstraße 3, 37077 Göttingen, Germany
Phone +49 551 39-12254 or +49 175 298 1638
Email: apack@uni-goettingen.de

Prof. Dr. Addi Bischoff
University of Münster
Institute for Planetology
Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Phone +49 251 83-33465
E-Mail: bischoa@uni-muenster.de

Weitere Informationen:

http://www.geologie.uni-koeln.de/1720.html
http://www.uni-goettingen.de/en/77365.html
http://www.uni-muenster.de/Planetology/ifp/personen/bischoff_addi/addihome.html

Thomas Richter | Georg-August-Universität Göttingen

Further reports about: Earth Environmental Geoscience Identification Moon Planetology collision difference isotope lunar

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>