Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon formed after collision of planets

06.06.2014

Göttingen scientists confirm “Giant impact“ theory – Lunar samples analyzed at Göttingen University

Scientists from the Universities of Göttingen, Cologne, and Münster in Germany have resolved an isotopic difference between the Earth and the Moon.

The slight variation in oxygen isotopes confirms the “Giant impact“ hypothesis of Moon formation, according to which the Moon formed from the debris of a giant collision between the Earth and another proto-Planet about 4.5 billion years ago. The results were published in the journal Science.

In the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre, the scientists analyzed samples from the Moon that were provided by NASA. The lunar basalts were brought back to Earth between 1969 and 1972 with Apollo Missions 11, 12, and 16.

They released the oxygen from the rocks, purified it and measured the pure oxygen gas in the mass spectrometer. “For the first time, we were able to show a subtle difference between the rare 17O isotope and the abundant 16O isotope,” explains Dr. Daniel Herwartz, who lead the study at Göttingen University and is now employed at the University of Cologne.

“The similar isotopic composition of Earth and Moon appeared to be at odds with the giant impact hypothesis, because numerical models of the collision predicted a difference. The difference we found is smaller than initially predicted, but that might be due to the fact that both planets originated from the same region of the solar system.”

Only a few laboratories worldwide are able to measure the rare 17O isotope at all. “For the last three years, staff and students in Göttingen have persistently worked on improving the analytical procedure,” says Prof. Dr. Andreas Pack, head of the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre.

“The results of this study show that this effort has paid off.” Some of the data were measured by student Bjarne Friedrichs for his Bachelor’s thesis.

Original publication: Daniel Herwartz, Andreas Pack, Bjarne Friedrichs, Addi Bischoff. Identification of the giant impactor Theia in lunar rocks. Science 2014. Doi: 10.1126/science.1251117.

Contact:
Dr. Daniel Herwartz
University of Cologne – Environmental Isotope Geochemistry
Greinstraße 4-6, 50939 Köln, Germany
Phone +49 221 470-3240 or +49 177 319 4278
Email: d.herwartz@uni-koeln.de

Prof. Dr. Andreas Pack
University of Göttingen
Geoscience Centre – Department of Isotope Geology
Goldschmidtstraße 3, 37077 Göttingen, Germany
Phone +49 551 39-12254 or +49 175 298 1638
Email: apack@uni-goettingen.de

Prof. Dr. Addi Bischoff
University of Münster
Institute for Planetology
Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Phone +49 251 83-33465
E-Mail: bischoa@uni-muenster.de

Weitere Informationen:

http://www.geologie.uni-koeln.de/1720.html
http://www.uni-goettingen.de/en/77365.html
http://www.uni-muenster.de/Planetology/ifp/personen/bischoff_addi/addihome.html

Thomas Richter | Georg-August-Universität Göttingen

Further reports about: Earth Environmental Geoscience Identification Moon Planetology collision difference isotope lunar

More articles from Earth Sciences:

nachricht Scientists observe first signs of healing in the Antarctic ozone layer
01.07.2016 | University of Leeds

nachricht Climate study finds human fingerprint in Northern Hemisphere greening
30.06.2016 | DOE/Oak Ridge National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>