Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon formed after collision of planets

06.06.2014

Göttingen scientists confirm “Giant impact“ theory – Lunar samples analyzed at Göttingen University

Scientists from the Universities of Göttingen, Cologne, and Münster in Germany have resolved an isotopic difference between the Earth and the Moon.

The slight variation in oxygen isotopes confirms the “Giant impact“ hypothesis of Moon formation, according to which the Moon formed from the debris of a giant collision between the Earth and another proto-Planet about 4.5 billion years ago. The results were published in the journal Science.

In the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre, the scientists analyzed samples from the Moon that were provided by NASA. The lunar basalts were brought back to Earth between 1969 and 1972 with Apollo Missions 11, 12, and 16.

They released the oxygen from the rocks, purified it and measured the pure oxygen gas in the mass spectrometer. “For the first time, we were able to show a subtle difference between the rare 17O isotope and the abundant 16O isotope,” explains Dr. Daniel Herwartz, who lead the study at Göttingen University and is now employed at the University of Cologne.

“The similar isotopic composition of Earth and Moon appeared to be at odds with the giant impact hypothesis, because numerical models of the collision predicted a difference. The difference we found is smaller than initially predicted, but that might be due to the fact that both planets originated from the same region of the solar system.”

Only a few laboratories worldwide are able to measure the rare 17O isotope at all. “For the last three years, staff and students in Göttingen have persistently worked on improving the analytical procedure,” says Prof. Dr. Andreas Pack, head of the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre.

“The results of this study show that this effort has paid off.” Some of the data were measured by student Bjarne Friedrichs for his Bachelor’s thesis.

Original publication: Daniel Herwartz, Andreas Pack, Bjarne Friedrichs, Addi Bischoff. Identification of the giant impactor Theia in lunar rocks. Science 2014. Doi: 10.1126/science.1251117.

Contact:
Dr. Daniel Herwartz
University of Cologne – Environmental Isotope Geochemistry
Greinstraße 4-6, 50939 Köln, Germany
Phone +49 221 470-3240 or +49 177 319 4278
Email: d.herwartz@uni-koeln.de

Prof. Dr. Andreas Pack
University of Göttingen
Geoscience Centre – Department of Isotope Geology
Goldschmidtstraße 3, 37077 Göttingen, Germany
Phone +49 551 39-12254 or +49 175 298 1638
Email: apack@uni-goettingen.de

Prof. Dr. Addi Bischoff
University of Münster
Institute for Planetology
Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Phone +49 251 83-33465
E-Mail: bischoa@uni-muenster.de

Weitere Informationen:

http://www.geologie.uni-koeln.de/1720.html
http://www.uni-goettingen.de/en/77365.html
http://www.uni-muenster.de/Planetology/ifp/personen/bischoff_addi/addihome.html

Thomas Richter | Georg-August-Universität Göttingen

Further reports about: Earth Environmental Geoscience Identification Moon Planetology collision difference isotope lunar

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>