Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon formed after collision of planets

06.06.2014

Göttingen scientists confirm “Giant impact“ theory – Lunar samples analyzed at Göttingen University

Scientists from the Universities of Göttingen, Cologne, and Münster in Germany have resolved an isotopic difference between the Earth and the Moon.

The slight variation in oxygen isotopes confirms the “Giant impact“ hypothesis of Moon formation, according to which the Moon formed from the debris of a giant collision between the Earth and another proto-Planet about 4.5 billion years ago. The results were published in the journal Science.

In the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre, the scientists analyzed samples from the Moon that were provided by NASA. The lunar basalts were brought back to Earth between 1969 and 1972 with Apollo Missions 11, 12, and 16.

They released the oxygen from the rocks, purified it and measured the pure oxygen gas in the mass spectrometer. “For the first time, we were able to show a subtle difference between the rare 17O isotope and the abundant 16O isotope,” explains Dr. Daniel Herwartz, who lead the study at Göttingen University and is now employed at the University of Cologne.

“The similar isotopic composition of Earth and Moon appeared to be at odds with the giant impact hypothesis, because numerical models of the collision predicted a difference. The difference we found is smaller than initially predicted, but that might be due to the fact that both planets originated from the same region of the solar system.”

Only a few laboratories worldwide are able to measure the rare 17O isotope at all. “For the last three years, staff and students in Göttingen have persistently worked on improving the analytical procedure,” says Prof. Dr. Andreas Pack, head of the Stable Isotope Laboratory at Göttingen University’s Geoscience Centre.

“The results of this study show that this effort has paid off.” Some of the data were measured by student Bjarne Friedrichs for his Bachelor’s thesis.

Original publication: Daniel Herwartz, Andreas Pack, Bjarne Friedrichs, Addi Bischoff. Identification of the giant impactor Theia in lunar rocks. Science 2014. Doi: 10.1126/science.1251117.

Contact:
Dr. Daniel Herwartz
University of Cologne – Environmental Isotope Geochemistry
Greinstraße 4-6, 50939 Köln, Germany
Phone +49 221 470-3240 or +49 177 319 4278
Email: d.herwartz@uni-koeln.de

Prof. Dr. Andreas Pack
University of Göttingen
Geoscience Centre – Department of Isotope Geology
Goldschmidtstraße 3, 37077 Göttingen, Germany
Phone +49 551 39-12254 or +49 175 298 1638
Email: apack@uni-goettingen.de

Prof. Dr. Addi Bischoff
University of Münster
Institute for Planetology
Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
Phone +49 251 83-33465
E-Mail: bischoa@uni-muenster.de

Weitere Informationen:

http://www.geologie.uni-koeln.de/1720.html
http://www.uni-goettingen.de/en/77365.html
http://www.uni-muenster.de/Planetology/ifp/personen/bischoff_addi/addihome.html

Thomas Richter | Georg-August-Universität Göttingen

Further reports about: Earth Environmental Geoscience Identification Moon Planetology collision difference isotope lunar

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>