Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring volcanoes with ground-based atomic clocks

30.06.2015

An international team led by scientists from the University of Zurich finds that high-precision atomic clocks can be used to monitor volcanoes and potentially improve predictions of future eruptions. In addition, a ground-based network of atomic clocks could monitor the reaction of the Earth’s crust to solid Earth tides.

Atomic clocks measure time with unbelievable accuracy. The best atomic clocks are so precise that they would lose less than one second over a period of 10 billion years. However, they are generally only used in laboratories.


The video shows, how atomic clocks can be used to monitor volcanoes. (Source: UZH)

Science and industry have yet to take full advantage of their unprecedented ability to measure time. An international team including Dr. Ruxandra Bondarescu, Andreas Schärer and Prof. Philippe Jetzer from the Institute of Physics from the University of Zurich discusses potential applications for atomic clocks.

Their analysis shows that the slow down of time predicted by general relativity can be measured by local clocks and used to monitor volcanoes. General relativity states that clocks positioned at different distances from a massive body like the Earth have different tick rates. The closer a clock is to a massive object, the slower it ticks.

In a similar manner, subterranean objects influence the tick rate of local clocks that are located above the Earth’s surface. New lava filling a magma chamber beneath a volcano makes a clock located above that volcano tick more slowly than a clock that is located further away. Volcanoes are currently monitored using GPS receivers.

The resulting data often has to be integrated over a period of several years before an estimate of the volume of new magma can be made. A network of local, highly precise atomic clocks may provide the same information within a few hours. This would make it possible to monitor processes inside volcanoes more closely and to make better predictions for future volcanic eruptions.

Monitoring the solid Earth tides with a global network of atomic clocks

Atomic clocks can also be used to monitor the solid Earth tides. Tides occur because the Earth moves in the gravitational field of the Sun and the Moon. It reacts to this outer field by deforming, which in turn leads to ocean tides and to the ground on the continents lifting and falling regularly. The ground can rise as much as 50 cm. A global network of atomic clocks that are connected via fiber optic cables used for internet, could provide continuous measurements of the Earth tides and check existing theoretical models. It would also be possible to examine any local differences in the response of the Earth’s crust to the Earth tides.

The researchers hope that high precision clocks could be deployed in volcanic areas in the next few years. This is, however, subject to sufficient interest and investment from industry. “We need this additional tool to monitor magma movement under volcanoes such as the Yellowstone supervolcano, which is overdue for an explosion that would alter life on Earth as we known it”, explains Bondarescu.

Literature:
Ruxandra Bondarescu, Andreas Schärer, Andrew P. Lundgren, György Hetényi, Nicolas Houlié, Philippe Jetzer, and Mihai Bondarescu. Atomic Clocks as a Tool to Monitor Vertical Surface Motion. Express letter in the Geophysical Journal International, in Press. arXiv:1506.02457.

Contacts:
Dr. Ruxandra Bondarescu
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 04
Email: ruxandra@physik.uzh.ch

Prof. Philippe Jetzer
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 19
Email: jetzer@physik.uzh.ch

http://www.mediadesk.uzh.ch/index.html

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/
http://www.mediadesk.uzh.ch/articles/2015/vulkane-mit-atomuhren-ueberwachen_en.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>