Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring volcanoes with ground-based atomic clocks

30.06.2015

An international team led by scientists from the University of Zurich finds that high-precision atomic clocks can be used to monitor volcanoes and potentially improve predictions of future eruptions. In addition, a ground-based network of atomic clocks could monitor the reaction of the Earth’s crust to solid Earth tides.

Atomic clocks measure time with unbelievable accuracy. The best atomic clocks are so precise that they would lose less than one second over a period of 10 billion years. However, they are generally only used in laboratories.


The video shows, how atomic clocks can be used to monitor volcanoes. (Source: UZH)

Science and industry have yet to take full advantage of their unprecedented ability to measure time. An international team including Dr. Ruxandra Bondarescu, Andreas Schärer and Prof. Philippe Jetzer from the Institute of Physics from the University of Zurich discusses potential applications for atomic clocks.

Their analysis shows that the slow down of time predicted by general relativity can be measured by local clocks and used to monitor volcanoes. General relativity states that clocks positioned at different distances from a massive body like the Earth have different tick rates. The closer a clock is to a massive object, the slower it ticks.

In a similar manner, subterranean objects influence the tick rate of local clocks that are located above the Earth’s surface. New lava filling a magma chamber beneath a volcano makes a clock located above that volcano tick more slowly than a clock that is located further away. Volcanoes are currently monitored using GPS receivers.

The resulting data often has to be integrated over a period of several years before an estimate of the volume of new magma can be made. A network of local, highly precise atomic clocks may provide the same information within a few hours. This would make it possible to monitor processes inside volcanoes more closely and to make better predictions for future volcanic eruptions.

Monitoring the solid Earth tides with a global network of atomic clocks

Atomic clocks can also be used to monitor the solid Earth tides. Tides occur because the Earth moves in the gravitational field of the Sun and the Moon. It reacts to this outer field by deforming, which in turn leads to ocean tides and to the ground on the continents lifting and falling regularly. The ground can rise as much as 50 cm. A global network of atomic clocks that are connected via fiber optic cables used for internet, could provide continuous measurements of the Earth tides and check existing theoretical models. It would also be possible to examine any local differences in the response of the Earth’s crust to the Earth tides.

The researchers hope that high precision clocks could be deployed in volcanic areas in the next few years. This is, however, subject to sufficient interest and investment from industry. “We need this additional tool to monitor magma movement under volcanoes such as the Yellowstone supervolcano, which is overdue for an explosion that would alter life on Earth as we known it”, explains Bondarescu.

Literature:
Ruxandra Bondarescu, Andreas Schärer, Andrew P. Lundgren, György Hetényi, Nicolas Houlié, Philippe Jetzer, and Mihai Bondarescu. Atomic Clocks as a Tool to Monitor Vertical Surface Motion. Express letter in the Geophysical Journal International, in Press. arXiv:1506.02457.

Contacts:
Dr. Ruxandra Bondarescu
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 04
Email: ruxandra@physik.uzh.ch

Prof. Philippe Jetzer
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 19
Email: jetzer@physik.uzh.ch

http://www.mediadesk.uzh.ch/index.html

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/
http://www.mediadesk.uzh.ch/articles/2015/vulkane-mit-atomuhren-ueberwachen_en.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>