Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring System Warns of Slippery Slopes

08.04.2011
Technology from TUM researchers makes continuous monitoring of endangered alpine regions possible

As a consequence of climatic changes, the number of avalanche threats has been increasing in the Alps and other alpine regions, with fatal consequences for people and infrastructures. Continuous monitoring of every endangered area has been lacking until now due to high costs and manpower requirements.

Geological researchers in Munich have now developed an inexpensive system, which with the help of several technologies can continuously monitor slopes, assess changes, and provide early warnings to communities potentially affected by landslides. The scientists themselves hope to improve their understanding of these natural phenomena by means of long-term measurements.

Doren in the Bregenzerwald, February 2007: a slope 650 meters long breaks, resulting in a massive slide into the valley below. The nearest residential buildings are very close to the 70-meter-high rim. This barely avoided catastrophe is not the only incident. Geologists have been monitoring increasingly unstable masses of earth over the past few years in the Alps and other Alpine regions, which have slipped down slopes and on slid unchecked down valleys to more stable substrates. The scientists are primarily looking at heavy rainfall and snowmelt caused by climatie change, which in turn has caused the substrate to soften and has increased the weight on it.

Identifying potentially dangerous mountain slopes is not difficult. Many of them have been unstable for centuries, and the remains of previous slides indicate prior disasters. In addition, geological records that reveal slopes at risk are available in Alpine countries. However, it has not been possible until recently to monitor any unsettled masses continuously. In order to detect movements, experts had to insert probes into drilled pockets and measure marked points on the surface. Permanently installing such devices is, however, normally too expensive to consider. Scientists can only do their inspections at intervals using this technique and gain limited insight about the events inside the slope.

Researchers at the Technische Universität München (TUM) and the Universitaet der Bundeswehr Muenchen have now made decisive progress in the development of geo-sensors and combined them with monitoring software into an early warning system that is both flexible and inexpensive to deploy. They can also drill into the ground at several locations. "We simply fill the drill pockets with basic coaxial cable, such as one uses for antenna cables, for example,” says Professor Kurosch Thuro, Engineering Geology Chair at TUM. The scientists use a very simple but effective mechanism; if the surface mass of earth starts to slip, the cable will be crushed at the transfer point against the unmoving stratum. A small transmission device on the surface records this event and forwards the information. In addition, the Engineering Geodata Department at the Bundeswehruniversität (Prof. Otto Heunecke) distributes sensors, whose position can be determined by means of GPS, over the slope. Here also, the challenge lies in achieving precision measurements in the millimeter range using ready-made, inexpensive components for recording even the smallest movements.

As the third step, the scientists are using a new-generation measuring device, the so-called video-tachometer, which uses a laser scanner and camera. Where one once had to set up artificial reflectors to measure the direction, distance and height of a target object, today the devices recognize natural target objects, such as stones or tree stumps, for example. Scientists have now programmed the manufacturer's prototypes so that each can detect the movements of a number of target objects. The tachometer charts the structure of a cliff, for example, re-measures it at periodic intervals, and records the changes while doing so. "If we don't have to set up reflectors, we will save even more money,” says Professor Thomas A. Wunderlich, Chair of Geodesy at TUM, "And we do not have any more concerns about grazing cattle running over them.”

With these three components, the scientists create a granular network of monitoring points across the slope. The data is collected at a central data base. The brain of the system assesses the data together with additional parameters, which include the weather data most importantly. The researchers tested their development at Sudelfeld in the Upper Bavarian town of Oberaudorf for three and half years. A hillside there is moving and threatens several mountain pastures and a federal highway. "Impressively, the data streams have shown us what is happening to the slope, how the precipitation and frost are affecting it and what is happening from a mechanical point of view,” says Kurosch Thuro. "Now, we understand these movements much better."

The scientists can evaluate individual events much better for this reason. As the slope very quickly slid four millimeters in May 2010, they knew that this distance was exceptional and a source of great concern, even though it looked minimal for that area at first. Furthermore, the assessment of the data made issuing an early warning possible even before the slope had really moved. "Because we now know how the rainfall is affecting the area, we were able to determine a threshold,” explains Thuro. If the ground water pressure exceeds a certain value, the system will trigger the alarm. "Then, there is a period of two and half days between the increased level and the movement of the slope."

Affected communities get an immediate benefit from the system, because they will get the data directly and will have it translated into comprehensible charts and explanations. After an early warning has been triggered, the responsible parties can barricade the slope, re-direct traffic, or evacuate buildings, as is appropriate for the level of danger.

In collaboration with two industrial partners, the researchers are now developing the system requested by the Bundesforschungsministerium (Federal Research Ministry) and the Deutsche Forschungsgemeinschaft (German Research Foundation) for marketability, using "Early Warning System for Alpine Slopes (alpEWAS)" as the project name. Interested parties have already made themselves known and a portion of the system is already being used in Doren. Professor Thuro expects significant progress not just for the users but also for science itself. "As the number of slopes that we can monitor continues to increase, we will understand even larger relationships between individual events and the alpine macro-climate."

For more information, visit:
http://www.alpewas.de
Contact Person:
Prof. Kurosch Thuro
Technische Universität München
Chair of Engineering Geology
Telephone: +49 89 289 25850
E-Mail: thuro@tum.de
Prof. Thomas A. Wunderlich
Technische Universität München
Chair of Geodesy
Telephone: +49 89 289 22850
E-Mail: th.wunderlich@bv.tum.de
Pictures for downloading:
http://mediatum.ub.tum.de/?id=1071848
Kontakt: presse@tum.de

Klaus Becker | EurekAlert!
Further information:
http://www.alpewas.de
http://www.tum.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>