Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New monitoring system identifies carbon dioxide from fossil fuel burning

20.04.2012
Researchers have developed a new monitoring technique that distinguishes emissions from man-made fossil fuels in the atmosphere from other gases, a technique that likely could be used to monitor the effectiveness of measures regulating greenhouse gases.

The team examined six years-worth of atmospheric gas measurements of carbon dioxide (CO2) and other gases, taken by aircraft every two weeks. Their method allowed them to separate CO2 derived from fossil fuels from CO2 being emitted by biological sources, such as plant respiration, said Scott Lehman, a senior research associate at the University of Colorado, Boulder, who led the study with John Miller, a research associate at the university.

The separation was made possible by the fact that CO2 released from burning of fossil fuels like coal, oil, and gas has no carbon-14, a radioactive form of carbon that is constantly forming in Earth's atmosphere. Because carbon-14 is radioactive, it decays, or transforms, into another, nonradioactive element over time. Half of a given amount of the substance decays every 5,700 years so fossil fuels, which are derived from remains of plants and other organic matter that accumulated millions of years ago, no longer contain the radioactive carbon.

In contrast, CO2 emitted from current biological sources is relatively rich in carbon-14. It's a significant enough difference for atmospheric scientists to detect, Lehman said. In the long run, measuring carbon-14 in the atmosphere offers the possibility to directly track country and state emissions of fossil-fuel CO2, said Miller. The technique would be an improvement over traditional, "accounting-based" methods of estimating emission rates of CO2 and other gases, which generally rely on reports from particular countries or regions regarding the use of coal, oil, and natural gas, he said.

"While the accounting-based approach is probably accurate at global scales, the uncertainties rise for smaller-scale regions," said Miller, also with the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory in Boulder. "And as CO2 emissions targets become more widespread, there may be a greater temptation to under-report. But we'll be able to see through that."

A paper on the subject was published April 19 in the Journal of Geophysical Research- Atmospheres, a publication of the American Geophysical Union.

The researchers also measured concentrations of 22 other atmospheric gases tied to human activities. One surprise in the study was that the researchers detected continued emissions of methyl chloroform and several other gases banned from production in the United States. Such observations emphasize the importance of independent monitoring, since the detection of such emissions could be overlooked by the widely used accounting-based estimation techniques, said Stephen Montzka, with NOAA's Earth System Research Laboratory, who worked on the study.

Fossil fuel emissions have driven Earth's atmospheric CO2 from concentrations of about 280 parts per million in the early 1800s to about 390 parts per million today, Miller said. The vast majority of climate scientists believe higher concentrations of the greenhouse gas CO2 in Earth's atmosphere are directly leading to rising temperatures on the planet.

"We think the approach offered by this study can increase the accuracy of emissions detection and verification for fossil fuel combustion and a host of other man-made gases," Lehman said. He added that using such a method involving carbon-14 has been supported by the National Academy of Sciences and could be an invaluable tool for monitoring greenhouse gases by federal agencies like NOAA.

Notes for Journalists Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://dx.doi.org/10.1029/2011JD017048 Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Title: "Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2"

Authors:
John B. Miller: NOAA Earth System Research Laboratory, Boulder, Colorado, USA and
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder,

Boulder, Colorado, USA;

Scott J. Lehman: Institute for Arctic and Alpine Research, University of Colorado Boulder,

Boulder, Colorado, USA;

Stephen A. Montzka: NOAA Earth System Research Laboratory, Boulder, Colorado, USA;

Colm Sweeney, Benjamin R. Miller and Anna Karion: NOAA Earth System Research
Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in Environmental

Science, University of Colorado Boulder, Boulder, Colorado, USA;

Chad Wolak: Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder,

Colorado, USA;

Ed J. Dlugokencky: NOAA Earth System Research Laboratory, Boulder, Colorado, USA;

John Southon: Department of Earth System Science, University of California, Irvine, California,

USA;

Jocelyn C. Turnbull: NOAA Earth System Research Laboratory, Boulder, Colorado, USA,
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder,

Boulder, Colorado, USA;

Pieter P. Tans: NOAA Earth System Research Laboratory, Boulder, Colorado, USA.

Contact information for the authors:
Scott Lehman, Phone: +1 (303) 492-8980, Email: Scott.Lehman@colorado.edu
John Miller, Phone: +1 (303) 497-7739, Email: John.B.Miller@noaa.gov

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>