Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New monitoring system identifies carbon dioxide from fossil fuel burning

20.04.2012
Researchers have developed a new monitoring technique that distinguishes emissions from man-made fossil fuels in the atmosphere from other gases, a technique that likely could be used to monitor the effectiveness of measures regulating greenhouse gases.

The team examined six years-worth of atmospheric gas measurements of carbon dioxide (CO2) and other gases, taken by aircraft every two weeks. Their method allowed them to separate CO2 derived from fossil fuels from CO2 being emitted by biological sources, such as plant respiration, said Scott Lehman, a senior research associate at the University of Colorado, Boulder, who led the study with John Miller, a research associate at the university.

The separation was made possible by the fact that CO2 released from burning of fossil fuels like coal, oil, and gas has no carbon-14, a radioactive form of carbon that is constantly forming in Earth's atmosphere. Because carbon-14 is radioactive, it decays, or transforms, into another, nonradioactive element over time. Half of a given amount of the substance decays every 5,700 years so fossil fuels, which are derived from remains of plants and other organic matter that accumulated millions of years ago, no longer contain the radioactive carbon.

In contrast, CO2 emitted from current biological sources is relatively rich in carbon-14. It's a significant enough difference for atmospheric scientists to detect, Lehman said. In the long run, measuring carbon-14 in the atmosphere offers the possibility to directly track country and state emissions of fossil-fuel CO2, said Miller. The technique would be an improvement over traditional, "accounting-based" methods of estimating emission rates of CO2 and other gases, which generally rely on reports from particular countries or regions regarding the use of coal, oil, and natural gas, he said.

"While the accounting-based approach is probably accurate at global scales, the uncertainties rise for smaller-scale regions," said Miller, also with the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory in Boulder. "And as CO2 emissions targets become more widespread, there may be a greater temptation to under-report. But we'll be able to see through that."

A paper on the subject was published April 19 in the Journal of Geophysical Research- Atmospheres, a publication of the American Geophysical Union.

The researchers also measured concentrations of 22 other atmospheric gases tied to human activities. One surprise in the study was that the researchers detected continued emissions of methyl chloroform and several other gases banned from production in the United States. Such observations emphasize the importance of independent monitoring, since the detection of such emissions could be overlooked by the widely used accounting-based estimation techniques, said Stephen Montzka, with NOAA's Earth System Research Laboratory, who worked on the study.

Fossil fuel emissions have driven Earth's atmospheric CO2 from concentrations of about 280 parts per million in the early 1800s to about 390 parts per million today, Miller said. The vast majority of climate scientists believe higher concentrations of the greenhouse gas CO2 in Earth's atmosphere are directly leading to rising temperatures on the planet.

"We think the approach offered by this study can increase the accuracy of emissions detection and verification for fossil fuel combustion and a host of other man-made gases," Lehman said. He added that using such a method involving carbon-14 has been supported by the National Academy of Sciences and could be an invaluable tool for monitoring greenhouse gases by federal agencies like NOAA.

Notes for Journalists Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://dx.doi.org/10.1029/2011JD017048 Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Title: "Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2"

Authors:
John B. Miller: NOAA Earth System Research Laboratory, Boulder, Colorado, USA and
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder,

Boulder, Colorado, USA;

Scott J. Lehman: Institute for Arctic and Alpine Research, University of Colorado Boulder,

Boulder, Colorado, USA;

Stephen A. Montzka: NOAA Earth System Research Laboratory, Boulder, Colorado, USA;

Colm Sweeney, Benjamin R. Miller and Anna Karion: NOAA Earth System Research
Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in Environmental

Science, University of Colorado Boulder, Boulder, Colorado, USA;

Chad Wolak: Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder,

Colorado, USA;

Ed J. Dlugokencky: NOAA Earth System Research Laboratory, Boulder, Colorado, USA;

John Southon: Department of Earth System Science, University of California, Irvine, California,

USA;

Jocelyn C. Turnbull: NOAA Earth System Research Laboratory, Boulder, Colorado, USA,
Cooperative Institute for Research in Environmental Science, University of Colorado Boulder,

Boulder, Colorado, USA;

Pieter P. Tans: NOAA Earth System Research Laboratory, Boulder, Colorado, USA.

Contact information for the authors:
Scott Lehman, Phone: +1 (303) 492-8980, Email: Scott.Lehman@colorado.edu
John Miller, Phone: +1 (303) 497-7739, Email: John.B.Miller@noaa.gov

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>