Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New monitoring stations detect 'silent earthquakes' in Costa Rica

After installing an extensive network of monitoring stations in Costa Rica, researchers have detected slow slip events (also known as "silent earthquakes") along a major fault zone beneath the Nicoya Peninsula.

These findings are helping scientists understand the full spectrum of motions occurring on the fault and may yield new insights into the events that lead to major earthquakes.

A slow slip event involves the same fault motion as an earthquake, but it happens so slowly that the ground does not shake. It can be detected only with networks of modern instruments that use the Global Positioning System (GPS) to measure precisely the movements of the Earth's crust over time.

Susan Schwartz, a professor of Earth and planetary sciences at the University of California, Santa Cruz, leads a team that has installed a permanent network of 13 GPS monitoring stations and 13 seismic stations on Costa Rica's Nicoya Peninsula.

"At least two slow slip events have occurred beneath the Nicoya Peninsula since 2003," Schwartz said. "When we recorded the first one in 2003, we had only 3 GPS stations. By 2007, we had 12 GPS stations and over 10 seismic stations, so the event that year was very nicely recorded."

The National Science Foundation (NSF) has funded the work by Schwartz and others to install monitoring equipment in Costa Rica. Schwartz, who directs UCSC's Keck Seismological Laboratory, has been working in the region since 1991. At the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago, she will describe results from the past decade of fault-zone monitoring in Central America.

"The newest discovery is the occurrence of these slow slip events. But there has been a decade of focused effort in this area that has significantly advanced our knowledge of the Central America seismogenic system," Schwartz said. "Initially, we focused on areas of the fault that are locked up, which slip in an earthquake. The slow slip is occurring in regions that are not strongly locked, and a big question is whether that is loading the locked area, making it more likely to break, or relieving stress on the fault."

Schwartz said she does not think slow slip events significantly increase the likelihood of a major earthquake on a locked portion of the fault. She noted, however, that scientists are still at an early stage in terms of understanding the implications of different kinds of fault motion and translating that information into earthquake hazard assessments.

Flanked by active tectonic margins on both the Pacific and Caribbean coasts, Costa Rica is one of the most earthquake-prone and volcanically active countries in the world. Just off the west coast is the Middle America Trench, where a section of the seafloor called the Cocos Plate dives beneath Central America, generating powerful earthquakes and feeding a string of active volcanoes. This type of boundary between two converging plates of the Earth's crust is called a subduction zone--and such zones are notorious for generating the most powerful and destructive earthquakes.

The slow slip phenomenon was first observed at subduction zones where hundreds of GPS and seismic instruments are deployed: the Cascadia fault zone (off the coast of Washington and British Columbia) and Japan's Nankai Trough. At these and most other subduction zones, the part of the plate boundary where earthquakes originate, called the seismogenic zone, lies beneath the ocean. But in Costa Rica, the seismogenic zone runs right beneath the Nicoya Peninsula.

"It's a perfect opportunity to study the seismogenic zone using a network of land-based instruments," Schwartz said.

The 2007 slow slip event in Costa Rica involved movement along the fault equivalent to a magnitude 6.9 earthquake. But it took place over a period of 30 days rather than the 10 seconds typical for an earthquake of that size, and such slow motion does not radiate the seismic energy associated with normal earthquakes. The instruments did pick up seismic tremor, however, which Schwartz likened to a lot of very small earthquakes. Tremor activity is also associated with slow slip events in Japan and Cascadia, but there are some differences in Costa Rica, Schwartz said.

"Costa Rica has a different type of subduction zone from the well-studied ones in Japan and Cascadia," she said. "One thing that makes it interesting is that the temperature is much cooler at the depth range where slip occurs, and that is helping us work out the role of fluids in generating slow slip."

Ultimately, the goal of this research is not only a better understanding of subduction zones, but also better assessments of earthquake hazards. Schwartz said her Costa Rican colleagues have been working to educate the population of Nicoya about earthquakes and related hazards. With a growing population along the coast, the region faces a potential tsunami threat as well as the possibility of a major earthquake, she said.

Tim Stephens | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>