Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Peat from Earth, Space

27.01.2010
A team of UK scientists led by Dr. Karen Newswise — Anderson (University of Exeter) has developed a new technique for monitoring the condition of peatlands. The team used a combination of images captured from Earth and space to measure spatial patterning in peatland surfaces as an indicator of their condition. This new method uses a novel coupled approach, using satellite images from space and airborne laser scanning data, and has resulted in improved peatland mapping products.

This new method could help monitor the damage that is being done to peatlands through human activity. Such disruption is contributing to global warming, as peatlands can release the carbon they absorb and store if they are damaged by drainage or peat extraction processes. This research, which appears in the January-February 2010 issue of Journal of Environmental Quality, reports that airborne laser scanning instruments are capable of measuring fine-scale peatland structures such as hummocks and hollows that typically measure less than four meters in size.

Lowland rainfed peatlands are recognized as being a globally important environmental resource because they absorb and store carbon. Their unique plant communities and their inherent wetness control their ability to act as carbon stores, but when human disturbance disrupts their surface structure, greenhouse gases are released instead. Many peatlands across the world are affected by drainage, peat removal and ecological disturbance so scientists have been working to develop a robust spatial method for monitoring peatland condition. Remote sensing techniques (where images from satellites in space are analyzed) provide a likely route for this.

The research team used data from an airborne “LiDAR,” a laser-scanning instrument, alongside data from the IKONOS satellite. They showed that when LiDAR data were combined with optical images collected from satellites, a powerful method for spatial mapping of peatland quality could be achieved.

The paper shows how use of a structural-based approach improved capabilities for mapping and monitoring peatland condition with an improvement in accuracy from 71.8% (without structural estimates) to 88.0% when airborne LiDAR data (which had been spatially preprocessed using a technique called semivariogram analysis) were used. This new approach offers an improved, physically based method for automated peatland condition mapping.

As Dr. Anderson, who led the study, noted, “This work is the first to demonstrate that peatland structures, which are linked to hydrological status and condition, can be measured using remote sensing techniques. Our approach enabled us to draw out the differences in surface pattern across the peatland and resulted in an improved mapping product which is useful for scientists, peatland managers, statutory conservation agencies, and for policy makers.”

Research is ongoing at the University of Exeter to investigate broader application of the method to other peatland sites, including an assessment of spaceborne imaging capabilities for global peatland monitoring. The ongoing work will also look at other types of peatlands, including upland peats, which show similar spatial patterning. This work was funded through a UK Natural Environment Research Council research grant to Karen Anderson (2008) and involved scientists from the University of Exeter, University of Southampton, University of East London, and Natural England.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/39/1/260.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>