Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular Genealogy In The Arctic sediment

Heat-loving bacteria found in the Arctic seabed have their origins in oil springs and the depths of the Earth's crust. This is the finding of a project supported by the Austrian Science Fund FWF, which used molecular biology to study "misplaced" bacteria such as these. The possibility that molecular biology could also help track down oil fields gives the project an interesting economic twist.

They were discovered over 50 years ago but their origins have remained a mystery. Living in the sediment of the Arctic seabed around Spitsbergen are bacteria that only really thrive in temperatures above 50 degrees Celsius. In fact, the term "living" can only be applied in the loosest of terms, as the bacteria found here exhibit little in the way of metabolic activity and spend their existence as dormant spores.

But it is their metabolism that is of most interest, since some of them are "sulphate-reducing microorganisms" (SRMs) and as such are capable of breaking down organic material in the absence of oxygen and the presence of sulphate. It is precisely this capability that gave the first indications of where these microbial migrants could originate from.

"While we would describe conditions in certain parts of our planet as inhospitable, others feel right at home there. Thermophilic SRMs love environments where temperatures exceed 50 degrees Celsius and where there is a distinct lack of oxygen. In conditions such as these, these microorganisms are able to break down organic material," explains Project Leader Dr. Alexander Loy from the Department of Microbial Ecology at the University of Vienna, adding: "Underwater oil springs and ecosystems deep in the Earth's crust offer just such conditions and were our first thought when trying to pin down the origins of thermophilic SRMs in Arctic sediment."

To test out this hypothesis, Dr. Loy and his team first used appropriate molecular biological methods to determine the relationships of the thermophilic bacteria. This work, which was supported by the Austrian Science Fund FWF, focused on 16S rRNA, a component of bacterial "protein factories". Due to the essential nature of 16S rRNA for all living beings, it has changed relatively little over the course of evolution. And these few changes enable scientists to draw conclusions about relationships between bacteria. If two species have some of these changes in common, it can be assumed that they are closely related.

The work quickly yielded results and, in September 2009, initial findings from Dr. Loy's team and data from colleagues at the Max Planck Institute for Marine Microbiology in Bremen (Germany), and the Universities of North Carolina (USA) and Aarhus (Denmark) were published in SCIENCE. Dr. Loy on the results of this "family history" research: "The closest relatives of the thermophilic bacteria in the Arctic come from oil fields in the North Sea. Up to 96 percent of the 16S rRNA in these species is identical to that of the species found in Arctic sediment." These results provided the first indications of where the bacteria could come from.

Further evidence came from an analysis of the number of endospores present in the Arctic seabed, which was conducted by Dr. Loy's international colleagues. Based on the numbers detected, it has been calculated that 100 million bacterial spores are deposited for each square metre, each year. This was the second key indication of the origin of these bacteria. It is evident that a big enough population must exist to ensure a continuous supply. Only oil fields and ecosystems in the Earth's crust, where high temperatures provide ideal conditions for heat-loving bacteria, could be responsible for such numbers.

If the thermophilic SRMs in Arctic waters do originate from underwater oil springs, the methods used could also have applications in oil exploration. Although this particular aspect was not a focal point of Dr. Loy's FWF project, it could have a very practical side effect.

Image and text will be available online from Monday, 18th January 2010, 09.00 a.m. CET onwards:

Original article:
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed" C. Hubert, A. Loy, M. Nickel, C. Arnosti, C. Baranyi, V. Brüchert, T. Ferdelman, K. Finster, F. M. Christensen, J. R. de Rezende, V. Vandieken, and B. B. Jørgensen. Science, 18th September 2009, VOL 325, doi: 10.1126/science.1174012
Scientific Contact:
Dr. Alexander Loy
Department für Mikrobielle Ökologie
Universität Wien
T +43 / 1 / 4277 - 54207
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T +43 / 1 / 505 67 40 - 8111

Michaela Fritsch | PR&D
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>