Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Genealogy In The Arctic sediment

18.01.2010
Heat-loving bacteria found in the Arctic seabed have their origins in oil springs and the depths of the Earth's crust. This is the finding of a project supported by the Austrian Science Fund FWF, which used molecular biology to study "misplaced" bacteria such as these. The possibility that molecular biology could also help track down oil fields gives the project an interesting economic twist.

They were discovered over 50 years ago but their origins have remained a mystery. Living in the sediment of the Arctic seabed around Spitsbergen are bacteria that only really thrive in temperatures above 50 degrees Celsius. In fact, the term "living" can only be applied in the loosest of terms, as the bacteria found here exhibit little in the way of metabolic activity and spend their existence as dormant spores.

But it is their metabolism that is of most interest, since some of them are "sulphate-reducing microorganisms" (SRMs) and as such are capable of breaking down organic material in the absence of oxygen and the presence of sulphate. It is precisely this capability that gave the first indications of where these microbial migrants could originate from.

FROM THE DEPTHS
"While we would describe conditions in certain parts of our planet as inhospitable, others feel right at home there. Thermophilic SRMs love environments where temperatures exceed 50 degrees Celsius and where there is a distinct lack of oxygen. In conditions such as these, these microorganisms are able to break down organic material," explains Project Leader Dr. Alexander Loy from the Department of Microbial Ecology at the University of Vienna, adding: "Underwater oil springs and ecosystems deep in the Earth's crust offer just such conditions and were our first thought when trying to pin down the origins of thermophilic SRMs in Arctic sediment."

To test out this hypothesis, Dr. Loy and his team first used appropriate molecular biological methods to determine the relationships of the thermophilic bacteria. This work, which was supported by the Austrian Science Fund FWF, focused on 16S rRNA, a component of bacterial "protein factories". Due to the essential nature of 16S rRNA for all living beings, it has changed relatively little over the course of evolution. And these few changes enable scientists to draw conclusions about relationships between bacteria. If two species have some of these changes in common, it can be assumed that they are closely related.

RELATIONSHIPS IN PERCENTAGES
The work quickly yielded results and, in September 2009, initial findings from Dr. Loy's team and data from colleagues at the Max Planck Institute for Marine Microbiology in Bremen (Germany), and the Universities of North Carolina (USA) and Aarhus (Denmark) were published in SCIENCE. Dr. Loy on the results of this "family history" research: "The closest relatives of the thermophilic bacteria in the Arctic come from oil fields in the North Sea. Up to 96 percent of the 16S rRNA in these species is identical to that of the species found in Arctic sediment." These results provided the first indications of where the bacteria could come from.

Further evidence came from an analysis of the number of endospores present in the Arctic seabed, which was conducted by Dr. Loy's international colleagues. Based on the numbers detected, it has been calculated that 100 million bacterial spores are deposited for each square metre, each year. This was the second key indication of the origin of these bacteria. It is evident that a big enough population must exist to ensure a continuous supply. Only oil fields and ecosystems in the Earth's crust, where high temperatures provide ideal conditions for heat-loving bacteria, could be responsible for such numbers.

If the thermophilic SRMs in Arctic waters do originate from underwater oil springs, the methods used could also have applications in oil exploration. Although this particular aspect was not a focal point of Dr. Loy's FWF project, it could have a very practical side effect.

Image and text will be available online from Monday, 18th January 2010, 09.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201001-en.html

Original article:
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed" C. Hubert, A. Loy, M. Nickel, C. Arnosti, C. Baranyi, V. Brüchert, T. Ferdelman, K. Finster, F. M. Christensen, J. R. de Rezende, V. Vandieken, and B. B. Jørgensen. Science, 18th September 2009, VOL 325, doi: 10.1126/science.1174012
Scientific Contact:
Dr. Alexander Loy
Department für Mikrobielle Ökologie
Universität Wien
T +43 / 1 / 4277 - 54207
E loy@microbial-ecology.net
W www.microbial-ecology.net
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Michaela Fritsch | PR&D
Further information:
http://www.microbial-ecology.net
http://www.fwf.ac.at

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>