Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Genealogy In The Arctic sediment

18.01.2010
Heat-loving bacteria found in the Arctic seabed have their origins in oil springs and the depths of the Earth's crust. This is the finding of a project supported by the Austrian Science Fund FWF, which used molecular biology to study "misplaced" bacteria such as these. The possibility that molecular biology could also help track down oil fields gives the project an interesting economic twist.

They were discovered over 50 years ago but their origins have remained a mystery. Living in the sediment of the Arctic seabed around Spitsbergen are bacteria that only really thrive in temperatures above 50 degrees Celsius. In fact, the term "living" can only be applied in the loosest of terms, as the bacteria found here exhibit little in the way of metabolic activity and spend their existence as dormant spores.

But it is their metabolism that is of most interest, since some of them are "sulphate-reducing microorganisms" (SRMs) and as such are capable of breaking down organic material in the absence of oxygen and the presence of sulphate. It is precisely this capability that gave the first indications of where these microbial migrants could originate from.

FROM THE DEPTHS
"While we would describe conditions in certain parts of our planet as inhospitable, others feel right at home there. Thermophilic SRMs love environments where temperatures exceed 50 degrees Celsius and where there is a distinct lack of oxygen. In conditions such as these, these microorganisms are able to break down organic material," explains Project Leader Dr. Alexander Loy from the Department of Microbial Ecology at the University of Vienna, adding: "Underwater oil springs and ecosystems deep in the Earth's crust offer just such conditions and were our first thought when trying to pin down the origins of thermophilic SRMs in Arctic sediment."

To test out this hypothesis, Dr. Loy and his team first used appropriate molecular biological methods to determine the relationships of the thermophilic bacteria. This work, which was supported by the Austrian Science Fund FWF, focused on 16S rRNA, a component of bacterial "protein factories". Due to the essential nature of 16S rRNA for all living beings, it has changed relatively little over the course of evolution. And these few changes enable scientists to draw conclusions about relationships between bacteria. If two species have some of these changes in common, it can be assumed that they are closely related.

RELATIONSHIPS IN PERCENTAGES
The work quickly yielded results and, in September 2009, initial findings from Dr. Loy's team and data from colleagues at the Max Planck Institute for Marine Microbiology in Bremen (Germany), and the Universities of North Carolina (USA) and Aarhus (Denmark) were published in SCIENCE. Dr. Loy on the results of this "family history" research: "The closest relatives of the thermophilic bacteria in the Arctic come from oil fields in the North Sea. Up to 96 percent of the 16S rRNA in these species is identical to that of the species found in Arctic sediment." These results provided the first indications of where the bacteria could come from.

Further evidence came from an analysis of the number of endospores present in the Arctic seabed, which was conducted by Dr. Loy's international colleagues. Based on the numbers detected, it has been calculated that 100 million bacterial spores are deposited for each square metre, each year. This was the second key indication of the origin of these bacteria. It is evident that a big enough population must exist to ensure a continuous supply. Only oil fields and ecosystems in the Earth's crust, where high temperatures provide ideal conditions for heat-loving bacteria, could be responsible for such numbers.

If the thermophilic SRMs in Arctic waters do originate from underwater oil springs, the methods used could also have applications in oil exploration. Although this particular aspect was not a focal point of Dr. Loy's FWF project, it could have a very practical side effect.

Image and text will be available online from Monday, 18th January 2010, 09.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201001-en.html

Original article:
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed" C. Hubert, A. Loy, M. Nickel, C. Arnosti, C. Baranyi, V. Brüchert, T. Ferdelman, K. Finster, F. M. Christensen, J. R. de Rezende, V. Vandieken, and B. B. Jørgensen. Science, 18th September 2009, VOL 325, doi: 10.1126/science.1174012
Scientific Contact:
Dr. Alexander Loy
Department für Mikrobielle Ökologie
Universität Wien
T +43 / 1 / 4277 - 54207
E loy@microbial-ecology.net
W www.microbial-ecology.net
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Michaela Fritsch | PR&D
Further information:
http://www.microbial-ecology.net
http://www.fwf.ac.at

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>