Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling the Mississippi: LSU Researchers Study Methods to Use River Sediment to Repair the Coast

20.05.2011
They say that time and tide wait for no man – well, neither does the mighty Mississippi River.

As the already gargantuan body of water swells beyond its normal manmade boundaries, the state of Louisiana is starting to see impact after having seen the damage already done to states from Missouri to Mississippi.

While near record-breaking water levels are expected any day now and safety precautions are being taken, one LSU professor explained how the river’s meandering historic path and silty contents might offer a future ray of hope.

“Historically, the Mississippi River is a meandering river, shifting its path pretty substantially over the past hundreds and thousands of years,” said Clint Willson, LSU associate professor of civil and environmental engineering and director of the university’s Vincent A. Forte River and Coastal Hydraulics Lab. “However, Louisiana, especially south Louisiana, relies on industry supported by the enormous number and size of ports. You can’t have a thriving port industry if the river you depend on constantly shifts, which is why we have restricted the river’s meandering over time.”

Large floods like the current one carry huge quantities of sediment that eventually deposit on the riverbed, making the river shallower, or are carried out to the Gulf of Mexico. In order to maintain the important navigation routes to the ports, the river must be dredged, which is an expensive process.

“What we need to consider is a way to efficiently capture flood water and sediment in a way that combines flood control and restoration benefits,” said Willson. “In addition to providing much needed resources to our coastal wetlands, this concept would also provide some redundancy for the flood control system. Of course, flood protection and public safety still needs to remain the number one priority.”

Willson, an expert in Mississippi River hydraulics and sediment transfer, has been studying the path sediment takes – or could take – over the lower 84 miles of the Mississippi River for years. His team at the Vincent A. Forte River and Coastal Hydraulics Lab, with the support of the Louisiana Office of Coastal Protection and Restoration, have used their small-scale physical model, or SSMP, of the river to study the potential for large-scale river and sediment diversions. One of the primary benefits of this model is that it only takes 30 minutes for them to model an entire year in river time. In other words, they can easily see the results from decades of sediment diversion operation over a very short period of time.

The 24 x 48-foot model, housed in a metal building next the levee on River Road, helps Willson and Louisiana officials evaluate potential sediment diversion locations and strategies. Experimental results from the SSPM are being used along with numerical model simulations to provide insights that help guide diversion planning and design.

“We would like to locate and design a diversion system that more effectively captures sediment. The Mississippi River is a wonderful natural resource, but currently we are not fully utilizing these resources,” he said. “Many of our coastal wetlands are in need of river water and sediment. With proper management and perhaps integration with flood control measures that take into consideration public safety and economic impact, we can harness all the qualities we’re not currently taking full advantage of.”

Currently, a project is underway to develop a model that will be large in scale and size, more than four times the size of the SSPM now housed in the Forte lab.

“With a model that size, we can look at the river all the way up to Donaldsonville and better study the management of the river and its resources within the context of both flood control and restoration,” he said. “But until then, there’s plenty of work to do right where we’re at now.”

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu
http://www.lsu.edu/departments/gold/2011/05/mississippi.shtml

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>