Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling the Mississippi: LSU Researchers Study Methods to Use River Sediment to Repair the Coast

20.05.2011
They say that time and tide wait for no man – well, neither does the mighty Mississippi River.

As the already gargantuan body of water swells beyond its normal manmade boundaries, the state of Louisiana is starting to see impact after having seen the damage already done to states from Missouri to Mississippi.

While near record-breaking water levels are expected any day now and safety precautions are being taken, one LSU professor explained how the river’s meandering historic path and silty contents might offer a future ray of hope.

“Historically, the Mississippi River is a meandering river, shifting its path pretty substantially over the past hundreds and thousands of years,” said Clint Willson, LSU associate professor of civil and environmental engineering and director of the university’s Vincent A. Forte River and Coastal Hydraulics Lab. “However, Louisiana, especially south Louisiana, relies on industry supported by the enormous number and size of ports. You can’t have a thriving port industry if the river you depend on constantly shifts, which is why we have restricted the river’s meandering over time.”

Large floods like the current one carry huge quantities of sediment that eventually deposit on the riverbed, making the river shallower, or are carried out to the Gulf of Mexico. In order to maintain the important navigation routes to the ports, the river must be dredged, which is an expensive process.

“What we need to consider is a way to efficiently capture flood water and sediment in a way that combines flood control and restoration benefits,” said Willson. “In addition to providing much needed resources to our coastal wetlands, this concept would also provide some redundancy for the flood control system. Of course, flood protection and public safety still needs to remain the number one priority.”

Willson, an expert in Mississippi River hydraulics and sediment transfer, has been studying the path sediment takes – or could take – over the lower 84 miles of the Mississippi River for years. His team at the Vincent A. Forte River and Coastal Hydraulics Lab, with the support of the Louisiana Office of Coastal Protection and Restoration, have used their small-scale physical model, or SSMP, of the river to study the potential for large-scale river and sediment diversions. One of the primary benefits of this model is that it only takes 30 minutes for them to model an entire year in river time. In other words, they can easily see the results from decades of sediment diversion operation over a very short period of time.

The 24 x 48-foot model, housed in a metal building next the levee on River Road, helps Willson and Louisiana officials evaluate potential sediment diversion locations and strategies. Experimental results from the SSPM are being used along with numerical model simulations to provide insights that help guide diversion planning and design.

“We would like to locate and design a diversion system that more effectively captures sediment. The Mississippi River is a wonderful natural resource, but currently we are not fully utilizing these resources,” he said. “Many of our coastal wetlands are in need of river water and sediment. With proper management and perhaps integration with flood control measures that take into consideration public safety and economic impact, we can harness all the qualities we’re not currently taking full advantage of.”

Currently, a project is underway to develop a model that will be large in scale and size, more than four times the size of the SSPM now housed in the Forte lab.

“With a model that size, we can look at the river all the way up to Donaldsonville and better study the management of the river and its resources within the context of both flood control and restoration,” he said. “But until then, there’s plenty of work to do right where we’re at now.”

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu
http://www.lsu.edu/departments/gold/2011/05/mississippi.shtml

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>