Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model by University of Nevada for how Nevada gold deposits formed may help in gold exploration

04.02.2011
A team of University of Nevada, Reno and University of Nevada, Las Vegas researchers have devised a new model for how Nevada's gold deposits formed, which may help in exploration efforts for new gold deposits.

The deposits, known as Carlin-type gold deposits, are characterized by extremely fine-grained nanometer-sized particles of gold adhered to pyrite over large areas that can extend to great depths. More gold has been mined from Carlin-type deposits in Nevada in the last 50 years – more than $200 billion worth at today's gold prices – than was ever mined from during the California gold rush of the 1800s.

This current Nevada gold boom started in 1961 with the discovery of the Carlin gold mine, near the town of Carlin, at a spot where the early westward-moving prospectors missed the gold because it was too fine-grained to be readily seen. Since the 1960s, geologists have found clusters of these "Carlin-type" deposits throughout northern Nevada. They constitute, after South Africa, the second largest concentration of gold on Earth. Despite their importance, geologists have argued for decades about how they formed.

"Carlin-type deposits are unique to Nevada in that they represent a perfect storm of Nevada's ideal geology – a tectonic trigger and magmatic processes, resulting in extremely efficient transport and deposition of gold," said John Muntean, a research economic geologist with the Nevada Bureau of Mines and Geology at the University of Nevada, Reno and previously an industry geologist who explored for gold in Nevada for many years.

"Understanding how these deposits formed is important because most of the deposits that cropped out at the surface have likely been found. Exploration is increasingly targeting deeper deposits. Such risky deep exploration requires expensive drilling.

"Our model for the formation of Carlin-type deposits may not directly result in new discoveries, but models for gold deposit formation play an important role in how companies explore by mitigating risk. Knowing how certain types of gold deposits form allows one to be more predictive by evaluating whether ore-forming processes operated in the right geologic settings. This could lead to identification of potential new areas of discovery."

Muntean collaborated with researchers from the University of Nevada, Las Vegas: Jean Cline, a facultyprofessor of geology at UNLV and a leading authority on Carlin-type gold deposits; Adam Simon, an assistant professor of geoscience who provided new experimental data and his expertise on the interplay between magmas and ore deposits; and Tony Longo, a post-doctoral fellow who carried out detailed microanalyses of the ore minerals.

The team combined decades of previous studies by research and industry geologists with new data of their own to reach their conclusions, which were written about in the Jan. 23 early online issue of Nature Geoscience magazine and will appear in the February printed edition. The team relates formation of the gold deposits to a change in plate tectonics and a major magma event about 40 million years ago. It is the most complete explanation for Carlin-type gold deposits to date.

"Our model won't be the final word on Carlin-type deposits," Muntean said. "We hope it spurs new research in Nevada, especially by people who may not necessarily be ore deposit geologists."

The work was funded by grants from the National Science Foundation, the United States Geological Survey, Placer Dome Exploration and Barrick Gold Corporation. The article appears in the online edition of the journal Nature Geosciences, available at http://www.nature.com/ngeo under "advanced online publication."

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>