Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Suggests Origins of Mars Gullies

11.02.2009
University of Arkansas researchers have used chemistry and geology to create a model that may explain the mystery of how modern-day gullies form on the surface of Mars.

Research professor Vincent F. Chevrier and graduate student Travis S. Altheide of the Arkansas Center for Space and Planetary Sciences report their findings in Geophysical Research Letters.

Planetary surveys have found abundant evidence of gullies on Mars, which suggest that at some point liquid has flowed across the planet’s surface.

Liquid water cannot exist on the surface of Mars given the current temperatures and pressures, so for many years, scientists theorized that the gullies formed hundreds of thousands of years ago during a change in the angle between the planes of the planet’s equator and its orbit about the sun.

However, the Mars Global Surveyor discovered a gully where none had been three years before, prompting scientists to speculate as to how it formed. Chevrier and Altheide decided to look at the possibility of brine – a concentrated solution of water and salt – as a potential gully carver. Water ice and salts are both found in various locations on the planet. And certain brines have much lower freezing points than water and therefore have the potential to exist in liquid form on Mars.

The researchers examined the properties of brine containing ferric sulfate, which has been found in some geologic formations on Mars. They created samples with different concentrations of ferric sulfate. Then they subjected the brown, sludge-like smelly substances to increasingly lower temperatures. In addition, they were able to re-create the conditions of atmosphere and pressure found on Mars to test the specific conditions under which the brine might be found and therefore get a glimpse of what it might look like.

They determined that the temperature at which the ferric sulfate brine turns completely from liquid to solid is extremely low – 68 degrees Celsius – and that its evaporation point is low enough that there is a possibility that, on occasion, this brine could be found on the surface of Mars in liquid form.

“The liquid has a window between frozen and boiling,” said Chevrier.

Using thermodynamic calculations and the temperature information gathered experimentally, Chevrier and Altheide created a map that shows where brine might be found above and below the surface on Mars. The map also shows whether or not the brine would be frozen or evaporating as a result of the temperatures. The map shows an area where the temperatures are such that the brine could, at times, be liquid and flowing.

They then created a map that shows all of the places on the surface of Mars where gullies have been discovered. The vast majority of the gullies lie within the zone where the brine could be liquid.

“We’re calling this the episodic liquid zone,” said Altheide. “Temperature swings in this region could cause the release of liquid in the form of brine and thus explain the formation of present-day gullies.”

CONTACTS:

Vincent Chevrier, research assistant professor, Arkansas Center for Space and Planetary Science
J. William Fulbright College of Arts and Sciences and College of Engineering
479-575-3170, vchevrie@uark.edu
Travis Altheide, graduate student, Arkansas Center for Space and Planetary Science
J. William Fulbright College of Arts and Sciences and College of Engineering
talthei@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>