Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Suggests Origins of Mars Gullies

11.02.2009
University of Arkansas researchers have used chemistry and geology to create a model that may explain the mystery of how modern-day gullies form on the surface of Mars.

Research professor Vincent F. Chevrier and graduate student Travis S. Altheide of the Arkansas Center for Space and Planetary Sciences report their findings in Geophysical Research Letters.

Planetary surveys have found abundant evidence of gullies on Mars, which suggest that at some point liquid has flowed across the planet’s surface.

Liquid water cannot exist on the surface of Mars given the current temperatures and pressures, so for many years, scientists theorized that the gullies formed hundreds of thousands of years ago during a change in the angle between the planes of the planet’s equator and its orbit about the sun.

However, the Mars Global Surveyor discovered a gully where none had been three years before, prompting scientists to speculate as to how it formed. Chevrier and Altheide decided to look at the possibility of brine – a concentrated solution of water and salt – as a potential gully carver. Water ice and salts are both found in various locations on the planet. And certain brines have much lower freezing points than water and therefore have the potential to exist in liquid form on Mars.

The researchers examined the properties of brine containing ferric sulfate, which has been found in some geologic formations on Mars. They created samples with different concentrations of ferric sulfate. Then they subjected the brown, sludge-like smelly substances to increasingly lower temperatures. In addition, they were able to re-create the conditions of atmosphere and pressure found on Mars to test the specific conditions under which the brine might be found and therefore get a glimpse of what it might look like.

They determined that the temperature at which the ferric sulfate brine turns completely from liquid to solid is extremely low – 68 degrees Celsius – and that its evaporation point is low enough that there is a possibility that, on occasion, this brine could be found on the surface of Mars in liquid form.

“The liquid has a window between frozen and boiling,” said Chevrier.

Using thermodynamic calculations and the temperature information gathered experimentally, Chevrier and Altheide created a map that shows where brine might be found above and below the surface on Mars. The map also shows whether or not the brine would be frozen or evaporating as a result of the temperatures. The map shows an area where the temperatures are such that the brine could, at times, be liquid and flowing.

They then created a map that shows all of the places on the surface of Mars where gullies have been discovered. The vast majority of the gullies lie within the zone where the brine could be liquid.

“We’re calling this the episodic liquid zone,” said Altheide. “Temperature swings in this region could cause the release of liquid in the form of brine and thus explain the formation of present-day gullies.”

CONTACTS:

Vincent Chevrier, research assistant professor, Arkansas Center for Space and Planetary Science
J. William Fulbright College of Arts and Sciences and College of Engineering
479-575-3170, vchevrie@uark.edu
Travis Altheide, graduate student, Arkansas Center for Space and Planetary Science
J. William Fulbright College of Arts and Sciences and College of Engineering
talthei@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>