Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT finds climate change could dramatically affect water supplies

19.12.2008
It's no simple matter to figure out how regional changes in precipitation, expected to result from global climate change, may affect water supplies. Now, a new analysis led by MIT researchers has found that the changes in groundwater may actually be much greater than the precipitation changes themselves.

For example, in places where annual rainfall may increase by 20 percent as a result of climate change, the groundwater might increase as much as 40 percent.

Conversely, the analysis showed in some cases just a 20 percent decrease in rainfall could lead to a 70 percent decrease in the recharging of local aquifers — a potentially devastating blow in semi-arid and arid regions.

But the exact effects depend on a complex mix of factors, the study found — including soil type, vegetation, and the exact timing and duration of rainfall events — so detailed studies will be required for each local region in order to predict the possible range of outcomes.

The research was conducted by Gene-Hua Crystal Ng, now a postdoctoral researcher in MIT's Department of Civil and Environmental Engineering (CEE), along with King Bhumipol Professor Dennis McLaughlin and Bacardi Stockholm Water Foundations Professor Dara Entekhabi, both of CEE, and Bridget Scanlon, a senior researcher at the University of Texas. The results are being presented Wednesday, Dec. 17, at the American Geophysical Union's fall meeting in San Francisco.

The analysis combines computer modeling and natural chloride tracer data to determine how precipitation, soil properties, and vegetation affect the transport of water from the surface to the aquifers below. This analysis focused on a specific semi-arid region near Lubbock, Texas, in the southern High Plains.

Predictions of the kinds and magnitudes of precipitation changes that may occur as the planet warms are included in the reports by the Intergovernmental Panel on Climate Change (IPCC), and are expressed as ranges of possible outcomes. "Because there is so much uncertainty, we wanted to be able to bracket" the expected impact on water supplies under the diverse climate projections, Ng says.

"What we found was very interesting," Ng says. "It looks like the changes in recharge could be even greater than the changes in climate. For a given percentage change in precipitation, we're getting even greater changes in recharge rates."

Among the most important factors, the team found, is the timing and duration of the precipitation. For example, it makes a big difference whether it comes in a few large rainstorms or many smaller ones, and whether most of the rainfall occurs in winter or summer. "Changes in precipitation are often reported as annual changes, but what affects recharge is when the precipitation happens, and how it compares to the growing season," she says.

The team presented the results as a range of probabilities, quantifying as much as possible "what we do and don't know" about the future climate and land-surface conditions, Ng says. "For each prediction of climate change, we get a distribution of possible recharge values."

If most of the rain falls while plants are growing, much of the water may be absorbed by the vegetation and released back into the atmosphere through transpiration, so very little percolates down to the aquifer. Similarly, it makes a big difference whether an overall increase in rainfall comes in the form of harder rainfalls, or more frequent small rainfalls. More frequent small rainstorms may be mostly soaked up by plants, whereas a few more intense events may be more likely to saturate the soil and increase the recharging effect.

"It's tempting to say that a doubling of the precipitation will lead to a doubling of the recharge rate," Ng says, "but when you look at how it's going to impact a given area, it gets more and more complicated. The results were startling."

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>