Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT finds climate change could dramatically affect water supplies

19.12.2008
It's no simple matter to figure out how regional changes in precipitation, expected to result from global climate change, may affect water supplies. Now, a new analysis led by MIT researchers has found that the changes in groundwater may actually be much greater than the precipitation changes themselves.

For example, in places where annual rainfall may increase by 20 percent as a result of climate change, the groundwater might increase as much as 40 percent.

Conversely, the analysis showed in some cases just a 20 percent decrease in rainfall could lead to a 70 percent decrease in the recharging of local aquifers — a potentially devastating blow in semi-arid and arid regions.

But the exact effects depend on a complex mix of factors, the study found — including soil type, vegetation, and the exact timing and duration of rainfall events — so detailed studies will be required for each local region in order to predict the possible range of outcomes.

The research was conducted by Gene-Hua Crystal Ng, now a postdoctoral researcher in MIT's Department of Civil and Environmental Engineering (CEE), along with King Bhumipol Professor Dennis McLaughlin and Bacardi Stockholm Water Foundations Professor Dara Entekhabi, both of CEE, and Bridget Scanlon, a senior researcher at the University of Texas. The results are being presented Wednesday, Dec. 17, at the American Geophysical Union's fall meeting in San Francisco.

The analysis combines computer modeling and natural chloride tracer data to determine how precipitation, soil properties, and vegetation affect the transport of water from the surface to the aquifers below. This analysis focused on a specific semi-arid region near Lubbock, Texas, in the southern High Plains.

Predictions of the kinds and magnitudes of precipitation changes that may occur as the planet warms are included in the reports by the Intergovernmental Panel on Climate Change (IPCC), and are expressed as ranges of possible outcomes. "Because there is so much uncertainty, we wanted to be able to bracket" the expected impact on water supplies under the diverse climate projections, Ng says.

"What we found was very interesting," Ng says. "It looks like the changes in recharge could be even greater than the changes in climate. For a given percentage change in precipitation, we're getting even greater changes in recharge rates."

Among the most important factors, the team found, is the timing and duration of the precipitation. For example, it makes a big difference whether it comes in a few large rainstorms or many smaller ones, and whether most of the rainfall occurs in winter or summer. "Changes in precipitation are often reported as annual changes, but what affects recharge is when the precipitation happens, and how it compares to the growing season," she says.

The team presented the results as a range of probabilities, quantifying as much as possible "what we do and don't know" about the future climate and land-surface conditions, Ng says. "For each prediction of climate change, we get a distribution of possible recharge values."

If most of the rain falls while plants are growing, much of the water may be absorbed by the vegetation and released back into the atmosphere through transpiration, so very little percolates down to the aquifer. Similarly, it makes a big difference whether an overall increase in rainfall comes in the form of harder rainfalls, or more frequent small rainfalls. More frequent small rainstorms may be mostly soaked up by plants, whereas a few more intense events may be more likely to saturate the soil and increase the recharging effect.

"It's tempting to say that a doubling of the precipitation will lead to a doubling of the recharge rate," Ng says, "but when you look at how it's going to impact a given area, it gets more and more complicated. The results were startling."

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>