Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Radioactivity in Ice Cores Bodes Ill for Part of Asia

20.11.2008
When Ohio State glaciologists failed to find the expected radioactive signals in the latest core they drilled from a Himalayan ice field, they knew it meant trouble for their research.

But those missing markers of radiation, remnants from atomic bomb tests a half-century ago, foretell much greater threat to the half-billion or more people living downstream of that vast mountain range.

It may mean that future water supplies could fall far short of what’s needed to keep that population alive.

In a paper just published in Geophysical Research Letters, researchers from the Byrd Polar Research Center explain that levels of tritium, beta radioactivity emitters like strontium and cesium, and an isotope of chlorine are absent in all three cores taken from the Naimona’nyi glacier 19,849 feet (6,050 meters) high on the southern margin of the Tibetan Plateau.

“We’ve drilled 13 cores over the years from these high-mountain regions and found these signals in all but one – this one,” explained Lonnie Thompson, University Distinguished Professor of Earth Sciences at Ohio State.

The absence of radioactive signals in the top portion of these cores is a critical problem for determining the age of the ice in the cores. The signals, remnants of the 1962-63 Soviet Arctic nuclear blasts and the 1952-58 nuclear tests in the South Pacific, provide well-dated benchmarks to calibrate the core time scales.

“We rely on these time markers to date the upper part of the ice cores and without them, extracting the climate history they preserve becomes more challenging,” Thompson said.

“We drilled three cores through the ice to bedrock at Naimona’nyi in 2006,” said Natalie Kehrwald, a doctoral student at Ohio State and lead author on the paper. “When we analyzed the top 50 feet (15 meters) of each core, we found that the beta radioactivity signal was barely above normal background levels.”

Tritium, an isotope of hydrogen, and chlorine36 were also both absent from the Naimona’nyi cores, she said. They were able, however, to find a small amount of a lead isotope, lead210, which allowed them to date the top of the core.

“We were able to get a date of approximately 1944 A.D.,” Kehrwald said, “and that, coupled with the other missing signals, means that no new ice has accumulated on the surface of the glacier since 1944,” nearly a decade before the atomic tests.

While the loss of the radioactive horizons to calibrate the cores poses a challenge for Thompson’s research, he worries more about the possibility that other high-altitude glaciers in the region, like Naimona’nyi, are no longer accumulating ice and the impact that could have on water resources for the people living in these regions.

“When you think about the millions of people over there who depend on the water locked in that ice, if they don’t have it available in the future, that will be a serious problem,” he said.

Seasonal runoff from glaciers like Naimona’nyi feeds the Indus, the Ganges and the Brahmaputra rivers in that part of the Asian subcontinent. In some places, for some months each year, those rivers are severely depleted now, the researchers said. The absence of new ice accumulating on the glaciers will only worsen that problem.

“The current models that predict river flow in the region have taken recent glacial ‘retreat’ into account,” said Kehrwald, “but they haven’t considered that some of these glaciers are actually thinning until now.

“If the thinning isn’t included, then whatever strategies people adopt in their efforts to adapt to reductions in river flow simply won’t work.”

Thompson fears that what’s happening to the Naimona’nyi glacier may be happening to many other high-altitude glaciers around the world. “I think that this has tremendous implications for future water supplies in the Andes, as well as the Himalayas, and for people living in those regions.”

The absence of the radioactive signals in the 2006 Naimona’nyi core also suggests that Thompson and his colleagues have been lucky with their previous expeditions to other ice fields.

“We have to wonder -- if we were to go back to previous drill sites, some drilled in the 1980s, and retrieved new cores -- would these radioactive signals be present today?” he asked.

“My guess is that they would be missing.” The researchers’ recent work has shown similar thinning on glaciers in Africa, South America and in Asia in the past few years.

Working on the project with Thompson and Kehrwald were professor of geography Ellen Mosley-Thompson, Mary Davis, and Yao Tandong, of the Institute for Tibetan Plateau Research with the Chinese Academy of Sciences.

The National Science Foundation and the Gary Comer Foundation supported parts of this research.

Contact: Lonnie Thompson, 614-292-6652; Thompson.3@osu.edu.

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>