Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Misleading mineral may have resulted in overestimate of water in moon


The amount of water present in the moon may have been overestimated by scientists studying the mineral apatite, says a team of researchers led by Jeremy Boyce of the UCLA Department of Earth, Planetary and Space Sciences.

Boyce and his colleagues created a computer model to accurately predict how apatite would have crystallized from cooling bodies of lunar magma early in the moon's history. Their simulations revealed that the unusually hydrogen-rich apatite crystals observed in many lunar rock samples may not have formed within a water-rich environment, as was originally expected.

This discovery has overturned the long-held assumption that the hydrogen in apatite is a good indicator of overall lunar water content.

"The mineral apatite is the most widely used method for estimating the amount of water in lunar rocks, but it cannot be trusted," said Boyce, who is an adjunct assistant professor in the UCLA College of Letters and Science. "Our new results show that there is not as much water in lunar magma as apatite would have us believe."

... more about:
»Earth »NASA »UCLA »apatite »chlorine »crystals »evidence »fluorine »lunar

The research was published online March 20 in the journal Science on and will be published in a future print edition.

For decades, scientists believed the moon was almost entirely devoid of water. However, the discovery of hydrogen-rich apatite within lunar rocks in 2010 seemed to hint at a more watery past. Scientists originally assumed that information obtained from a small sample of apatite could predict the original water content of a large body of magma, or even the entire moon, but Boyce's study indicates that apatite may, in fact, be deceptive.

Boyce believes the high water content within lunar apatite results from a quirk in the crystallization process rather than a water-rich lunar environment. When water is present as molten rock cools, apatite can form by incorporating hydrogen atoms into its crystal structure. However, hydrogen will be included in the newly crystallizing mineral only if apatite's preferred building blocks, fluorine and chlorine, have been mostly exhausted.

"Early-forming apatite is so fluorine-rich that it vacuums all the fluorine out of the magma, followed by chlorine," Boyce said. "Apatite that forms later doesn't see any fluorine or chlorine and becomes hydrogen-rich because it has no choice."

Therefore, when fluorine and chlorine become depleted, a cooling body of magma will shift from forming hydrogen-poor apatite to forming hydrogen-rich apatite, with the latter not accurately reflecting the original water content in the magma.

Understanding the story of lunar apatite has implications beyond determining how much water is locked inside lunar rocks and soil. According to the predominant theory of how the moon originally formed, hydrogen and other volatile elements should not be present at all in lunar rocks.

Many scientists theorize that the moon formed when a giant impact tore free a large chunk of Earth more than 4 billion years ago. If this "giant impact" model is correct, the moon would have been completely molten, and lighter elements such as hydrogen should have bubbled to the surface and escaped into space. Since hydrogen is a key component of water, a moon formed by a giant impact should be dry.

The majority of lunar samples are in fact very dry and missing lighter elements. Yet hydrogen-rich apatite crystals are found in a whole host of lunar samples and have presented a paradox for scientists. Somehow, despite the moon's fiery beginning, some water and other volatiles may have remained, though perhaps not as much as apatite initially implied.

"We had 40 years of believing in a dry moon, and now we have some evidence that the old dry model of the moon wasn't perfect," Boyce said. "However, we need to be cautious and look carefully at each piece of evidence before we decide that rocks on the moon are as wet as those on Earth."

This study shows that scientists still have much to learn about the composition and environment of the early moon.

"We're knocking out one of the most important pillars of evidence regarding the conditions of the formation and evolution of the moon," Boyce said. "Next, we plan to determine how badly apatite has distorted our view of the moon and how we can best see past it to get at the moon's origin."


The research was supported by a NASA Cosmochemistry grant and a NASA Lunar Advanced Science for Exploration Research grant.

Co-authors of the study include undergraduate Steven Tomlinson from UCLA, assistant research professor Francis McCubbin from the University of New Mexico, professor James Greenwood from Wesleyan University and staff scientist Allan Treiman from the NASA-funded Lunar and Planetary Institute.

Stuart Wolpert | EurekAlert!
Further information:

Further reports about: Earth NASA UCLA apatite chlorine crystals evidence fluorine lunar

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>