Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mining ancient ores for clues to early life

11.12.2012
Scientists probe Canadian sulfide ore to confirm microbial activity in seawater 2.7 billion years ago

An analysis of sulfide ore deposits from one of the world's richest base-metal mines confirms that oxygen levels were extremely low on Earth 2.7 billion years ago, but also shows that microbes were actively feeding on sulfate in the ocean and influencing seawater chemistry during that geological time period.

The research, reported by a team of Canadian and U.S. scientists in Nature Geoscience, provides new insight into how ancient metal-ore deposits can be used to better understand the chemistry of the ancient oceans – and the early evolution of life.

Sulfate is the second most abundant dissolved ion in the oceans today. It comes from the "rusting" of rocks by atmospheric oxygen, which creates sulfate through chemical reactions with pyrite, the iron sulfide material known as "fool's gold."

The researchers, led by PhD student John Jamieson of the University of Ottawa and Prof. Boswell Wing of McGill, measured the "weight" of sulfur in samples of massive sulfide ore from the Kidd Creek copper-zinc mine in Timmins, Ontario, using a highly sensitive instrument known as a mass spectrometer. The weight is determined by the different amounts of isotopes of sulfur in a sample, and the abundance of different isotopes indicates how much seawater sulfate was incorporated into the massive sulfide ore that formed at the bottom of ancient oceans. That ancient ore is now found on the Earth's surface, and is particularly common in the Canadian shield.

The scientists found that much less sulfate was incorporated into the 2.7 billion-year-old ore at Kidd Creek than is incorporated into similar ore forming at the bottom of oceans today. From these measurements, the researchers were able to model how much sulfate must have been present in the ancient seawater. Their conclusion: sulfate levels were about 350 times lower than in today's ocean. Though they were extremely low, sulfate levels in the ancient ocean still supported an active global population of microbes that use sulfate to gain energy from organic carbon.

"The sulfide ore deposits that we looked at are widespread on Earth, with Canada and Quebec holding the majority of them," says Wing, an associate professor in McGill's Department of Earth and Planetary Science. "We now have a tool for probing when and where these microbes actually came into global prominence."

"Deep within a copper-zinc mine in northern Ontario that was once a volcanically active ancient seafloor may not be the most intuitive place one would think to look for clues into the conditions in which the earliest microbes thrived over 2.7 billion years ago," Jamieson adds. "However, our increasing understanding of these ancient environments and our abilities to analyze samples to a very high precision has opened the door to further our understanding of the conditions under which life evolved."

The other members of the research team were Prof. James Farquhar of the University of Maryland and Prof. Mark D. Hannington of the University of Ottawa.

The Natural Sciences and Engineering Research Council of Canada made this study possible through fellowships to Jamieson and a Discovery grant to Wing.

To access the study's abstract: http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1647.html

Chris Chipello | EurekAlert!
Further information:
http://www.mcgill.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>