Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mineral diversity clue to early Earth chemistry

01.03.2013
Mineral evolution is a new way to look at our planet's history.

It's the study of the increasing diversity and characteristics of Earth's near-surface minerals, from the dozen that arrived on interstellar dust particles when the Solar System was formed to the more than 4,700 types existing today.

New research on a mineral called molybdenite by a team led by Robert Hazen at Carnegie's Geophysical Laboratory provides important new insights about the changing chemistry of our planet as a result of geological and biological processes.

The work is published by Earth and Planetary Science Letters.

Mineral evolution is an approach to understanding Earth's changing near-surface geochemistry. All chemical elements were present from the start of our Solar System, but at first they formed comparatively few minerals—perhaps no more than 500 different species in the first billion years. As time passed on the planet, novel combinations of elements led to new minerals.

Molybdenite is the most common ore mineral of the critical metallic element molybdenum. Hazen and his team, which includes fellow Geophysical Laboratory scientists Dimitri Sverjensky and John Armstrong, analyzed 442 molybdenite samples from 135 locations and ages ranging from 2.91 billion years old to 6.3 million years old. They specifically looked for trace contamination of the element rhenium in the molybdenite, because rhenium can be used to use to gauge historical chemical reactions with oxygen from the environment.

They found that concentrations of rhenium, a trace element that is sensitive to oxidation reactions, increased significantly—by a factor of eight—over the past three billion years. The team suggests that this change reflects the increasing near-surface oxidation conditions from the Archean Eon more than 2.5 billion years ago to the Phanerozoic Eon less than 542 million years ago. This oxygen increase was a consequence of what's called the Great Oxidation Event, when the Earth's atmospheric oxygen levels skyrocketed as a consequence of oxygen-producing photosynthetic microbes.

In addition, they found that the distribution of molybdenite deposits through time roughly correlates with five periods of supercontinent formation, the assemblies of Kenorland, Nuna, Rodinia, Pannotia, and Pangea. This correlation supports previous findings from Hazen and his colleagues that mineral formation increases markedly during episodes of continental convergence and supercontinent assembly and that a dearth of mineral deposits form during periods of tectonic stability.

"Our work continues to demonstrate that a major driving force for mineral evolution is hydrothermal activity associated with colliding continents and the increasing oxygen content of the atmosphere caused by the rise of life on Earth," Hazen said.

Hazen's other co-authors were Joshua Golden, Melissa McMillan, Robert T. Downs, Grethe Hystad, and Ian Goldstein of the University of Arizona; and Holly J. Stein and Aaron Zimmerman of Colorado State University (the former also of the Geological Survey of Norway).

Russell Hemley and the Carnegie Institution for Science provided a grant to support the initial development of the Mineral Evolution Database. This work was supported in part by the NASA Astrobiology Institute and the Deep Carbon Observatory, as well as a NSF-NASA collaborative research grant and DOE.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Robert Hazen | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>