Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms Cited as Missing Factor in Climate Change Equation

18.12.2009
Those seeking to understand and predict climate change can now use an additional tool to calculate carbon dioxide exchanges on land, according to a scientific journal article publishing this week.

The research, publishing in the Proceedings of the National Academy of Sciences’ Early Edition, incorporates into global computer models the significant impact an enzyme, carbonic anhydrase, has on the chemical form of carbon dioxide released from the soils and reduces uncertainties in estimates of CO2 taken up and released in terrestrial ecosystems.

The same enzyme is present in foliage and soils, but leaves a different imprint on CO2 involved in photosynthesis and respired by soils.

“Our paper presents measurements from all the major regions of the world where we have experimentally determined the effect of this enzyme, produced by many microorganisms, on carbon dioxide released from the soil,” said Dr. Behzad Mortazavi, an assistant professor of biological sciences at The University of Alabama, and a co-author of the article.

In computer models used to estimate and predict carbon dioxide, or CO2, exchange, scientists had previously incorporated the role this enzyme plays in the vegetation, but had neglected to include its role in soils, according to the collaborative paper written by 18 co-authors from around the world.

Revising the computer model predictions to take the soil enzymes’ impact on CO2 into account reduces the discrepancies between the model and atmospheric observations, according to the paper whose lead authors are Lisa Wingate and Jérôme Ogée, representing the University of Edinburg and the French National Institute for Agricultural Research, respectively.

While scientists had suspected the enzyme was also active in soils, Mortazavi said the impact of the enzymes within soil on CO2 had been difficult to measure and thereby was not factored into the computer models.

In order to effectively tackle the complexities regarding human’s impact on climate changes, it’s important to accurately understand the natural processes, the UA scientist said.

“In general, it’s very challenging to determine how much carbon is taken up by photosynthesis versus how much carbon is released by respiration,” Mortazavi said.

“It’s important to know the contributions of these two processes because as the climate is warming, the balance between carbon taken up and released on land will change. Warmer temperatures can increase the microbial activity in the soils, leading to a greater release of CO2 from the soil.”

Ideally, the amount of carbon dioxide removed naturally through the carbon cycle balances the total carbon dioxide emissions. The amount of carbon released into the atmosphere has grown out of balance because of the increased number of human activities such as the use of fossil fuels, many scientists believe.

As the world debates what steps should be taken to address human activities believed to contribute to climate change, Mortazavi said it’s important the naturally occurring processes are measured accurately, something to which this research will contribute.

“This is an additional tool to look separately at the uptake of CO2 by photosynthesis, on the one hand, and, on the other hand, the release of CO2 by respiration.”

Source: Dr. Behzad Mortazavi, 251/861-2189, bmortazavi@ua.edu

Chris Bryant | Newswise Science News
Further information:
http://www.ua.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>