Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microorganisms Cited as Missing Factor in Climate Change Equation

Those seeking to understand and predict climate change can now use an additional tool to calculate carbon dioxide exchanges on land, according to a scientific journal article publishing this week.

The research, publishing in the Proceedings of the National Academy of Sciences’ Early Edition, incorporates into global computer models the significant impact an enzyme, carbonic anhydrase, has on the chemical form of carbon dioxide released from the soils and reduces uncertainties in estimates of CO2 taken up and released in terrestrial ecosystems.

The same enzyme is present in foliage and soils, but leaves a different imprint on CO2 involved in photosynthesis and respired by soils.

“Our paper presents measurements from all the major regions of the world where we have experimentally determined the effect of this enzyme, produced by many microorganisms, on carbon dioxide released from the soil,” said Dr. Behzad Mortazavi, an assistant professor of biological sciences at The University of Alabama, and a co-author of the article.

In computer models used to estimate and predict carbon dioxide, or CO2, exchange, scientists had previously incorporated the role this enzyme plays in the vegetation, but had neglected to include its role in soils, according to the collaborative paper written by 18 co-authors from around the world.

Revising the computer model predictions to take the soil enzymes’ impact on CO2 into account reduces the discrepancies between the model and atmospheric observations, according to the paper whose lead authors are Lisa Wingate and Jérôme Ogée, representing the University of Edinburg and the French National Institute for Agricultural Research, respectively.

While scientists had suspected the enzyme was also active in soils, Mortazavi said the impact of the enzymes within soil on CO2 had been difficult to measure and thereby was not factored into the computer models.

In order to effectively tackle the complexities regarding human’s impact on climate changes, it’s important to accurately understand the natural processes, the UA scientist said.

“In general, it’s very challenging to determine how much carbon is taken up by photosynthesis versus how much carbon is released by respiration,” Mortazavi said.

“It’s important to know the contributions of these two processes because as the climate is warming, the balance between carbon taken up and released on land will change. Warmer temperatures can increase the microbial activity in the soils, leading to a greater release of CO2 from the soil.”

Ideally, the amount of carbon dioxide removed naturally through the carbon cycle balances the total carbon dioxide emissions. The amount of carbon released into the atmosphere has grown out of balance because of the increased number of human activities such as the use of fossil fuels, many scientists believe.

As the world debates what steps should be taken to address human activities believed to contribute to climate change, Mortazavi said it’s important the naturally occurring processes are measured accurately, something to which this research will contribute.

“This is an additional tool to look separately at the uptake of CO2 by photosynthesis, on the one hand, and, on the other hand, the release of CO2 by respiration.”

Source: Dr. Behzad Mortazavi, 251/861-2189,

Chris Bryant | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>