Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to prevent undersea ice clogs

12.04.2012
Surface coatings developed by MIT researchers could inhibit buildup of methane hydrates that can block deep-sea oil and gas wells

During the massive oil spill from the ruptured Deepwater Horizon well in 2010, it seemed at first like there might be a quick fix: a containment dome lowered onto the broken pipe to capture the flow so it could be pumped to the surface and disposed of properly. But that attempt quickly failed, because the dome almost instantly became clogged with frozen methane hydrate.

Methane hydrates, which can freeze upon contact with cold water in the deep ocean, are a chronic problem for deep-sea oil and gas wells. Sometimes these frozen hydrates form inside the well casing, where they can restrict or even block the flow, at enormous cost to the well operators.

Now researchers at MIT, led by associate professor of mechanical engineering Kripa Varanasi, say they have found a solution, described recently in the journal Physical Chemistry Chemical Physics. The paper's lead author is J. David Smith, a graduate student in mechanical engineering.

The deep sea is becoming "a key source" of new oil and gas wells, Varanasi says, as the world's energy demands continue to increase rapidly. But one of the crucial issues in making these deep wells viable is "flow assurance": finding ways to avoid the buildup of methane hydrates. Presently, this is done primarily through the use of expensive heating systems or chemical additives.

"The oil and gas industries currently spend at least $200 million a year just on chemicals" to prevent such buildups, Varanasi says; industry sources say the total figure for prevention and lost production due to hydrates could be in the billions. His team's new method would instead use passive coatings on the insides of the pipes that are designed to prevent the hydrates from adhering.

These hydrates form a cage-like crystalline structure, called clathrate, in which molecules of methane are trapped in a lattice of water molecules. Although they look like ordinary ice, methane hydrates form only under very high pressure: in deep waters or beneath the seafloor, Smith says. By some estimates, the total amount of methane (the main ingredient of natural gas) contained in the world's seafloor clathrates greatly exceeds the total known reserves of all other fossil fuels combined.

Inside the pipes that carry oil or gas from the depths, methane hydrates can attach to the inner walls — much like plaque building up inside the body's arteries — and, in some cases, eventually block the flow entirely. Blockages can happen without warning, and in severe cases require the blocked section of pipe to be cut out and replaced, resulting in long shutdowns of production. Present prevention efforts include expensive heating or insulation of the pipes or additives such as methanol dumped into the flow of gas or oil. "Methanol is a good inhibitor," Varanasi says, but is "very environmentally unfriendly" if it escapes.

Varanasi's research group began looking into the problem before the Deepwater Horizon spill in the Gulf of Mexico. The group has long focused on ways of preventing the buildup of ordinary ice — such as on airplane wings — and on the creation of superhydrophobic surfaces, which prevent water droplets from adhering to a surface. So Varanasi decided to explore the potential for creating what he calls "hydrate-phobic" surfaces to prevent hydrates from adhering tightly to pipe walls. Because methane hydrates themselves are dangerous, the researchers worked mostly with a model clathrate hydrate system that exhibits similar properties.

The study produced several significant results: First, by using a simple coating, Varanasi and his colleagues were able to reduce hydrate adhesion in the pipe to one-quarter of the amount on untreated surfaces. Second, the test system they devised provides a simple and inexpensive way of searching for even more effective inhibitors. Finally, the researchers also found a strong correlation between the "hydrate-phobic" properties of a surface and its wettability — a measure of how well liquid spreads on the surface.

The basic findings also apply to other adhesive solids, Varanasi says — for example, solder adhering to a circuit board, or calcite deposits inside plumbing lines — so the same testing methods could be used to screen coatings for a wide variety of commercial and industrial processes.

The research team included MIT postdoc Adam Meuler and undergraduate Harrison Bralower; professor of mechanical engineering Gareth McKinley; St. Laurent Professor of Chemical Engineering Robert Cohen; and Siva Subramanian and Rama Venkatesan, two researchers from Chevron Energy Technology Company. The work was funded by the MIT Energy Initiative-Chevron program and Varanasi's Doherty Chair in Ocean Utilization.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>