Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to prevent undersea ice clogs

12.04.2012
Surface coatings developed by MIT researchers could inhibit buildup of methane hydrates that can block deep-sea oil and gas wells

During the massive oil spill from the ruptured Deepwater Horizon well in 2010, it seemed at first like there might be a quick fix: a containment dome lowered onto the broken pipe to capture the flow so it could be pumped to the surface and disposed of properly. But that attempt quickly failed, because the dome almost instantly became clogged with frozen methane hydrate.

Methane hydrates, which can freeze upon contact with cold water in the deep ocean, are a chronic problem for deep-sea oil and gas wells. Sometimes these frozen hydrates form inside the well casing, where they can restrict or even block the flow, at enormous cost to the well operators.

Now researchers at MIT, led by associate professor of mechanical engineering Kripa Varanasi, say they have found a solution, described recently in the journal Physical Chemistry Chemical Physics. The paper's lead author is J. David Smith, a graduate student in mechanical engineering.

The deep sea is becoming "a key source" of new oil and gas wells, Varanasi says, as the world's energy demands continue to increase rapidly. But one of the crucial issues in making these deep wells viable is "flow assurance": finding ways to avoid the buildup of methane hydrates. Presently, this is done primarily through the use of expensive heating systems or chemical additives.

"The oil and gas industries currently spend at least $200 million a year just on chemicals" to prevent such buildups, Varanasi says; industry sources say the total figure for prevention and lost production due to hydrates could be in the billions. His team's new method would instead use passive coatings on the insides of the pipes that are designed to prevent the hydrates from adhering.

These hydrates form a cage-like crystalline structure, called clathrate, in which molecules of methane are trapped in a lattice of water molecules. Although they look like ordinary ice, methane hydrates form only under very high pressure: in deep waters or beneath the seafloor, Smith says. By some estimates, the total amount of methane (the main ingredient of natural gas) contained in the world's seafloor clathrates greatly exceeds the total known reserves of all other fossil fuels combined.

Inside the pipes that carry oil or gas from the depths, methane hydrates can attach to the inner walls — much like plaque building up inside the body's arteries — and, in some cases, eventually block the flow entirely. Blockages can happen without warning, and in severe cases require the blocked section of pipe to be cut out and replaced, resulting in long shutdowns of production. Present prevention efforts include expensive heating or insulation of the pipes or additives such as methanol dumped into the flow of gas or oil. "Methanol is a good inhibitor," Varanasi says, but is "very environmentally unfriendly" if it escapes.

Varanasi's research group began looking into the problem before the Deepwater Horizon spill in the Gulf of Mexico. The group has long focused on ways of preventing the buildup of ordinary ice — such as on airplane wings — and on the creation of superhydrophobic surfaces, which prevent water droplets from adhering to a surface. So Varanasi decided to explore the potential for creating what he calls "hydrate-phobic" surfaces to prevent hydrates from adhering tightly to pipe walls. Because methane hydrates themselves are dangerous, the researchers worked mostly with a model clathrate hydrate system that exhibits similar properties.

The study produced several significant results: First, by using a simple coating, Varanasi and his colleagues were able to reduce hydrate adhesion in the pipe to one-quarter of the amount on untreated surfaces. Second, the test system they devised provides a simple and inexpensive way of searching for even more effective inhibitors. Finally, the researchers also found a strong correlation between the "hydrate-phobic" properties of a surface and its wettability — a measure of how well liquid spreads on the surface.

The basic findings also apply to other adhesive solids, Varanasi says — for example, solder adhering to a circuit board, or calcite deposits inside plumbing lines — so the same testing methods could be used to screen coatings for a wide variety of commercial and industrial processes.

The research team included MIT postdoc Adam Meuler and undergraduate Harrison Bralower; professor of mechanical engineering Gareth McKinley; St. Laurent Professor of Chemical Engineering Robert Cohen; and Siva Subramanian and Rama Venkatesan, two researchers from Chevron Energy Technology Company. The work was funded by the MIT Energy Initiative-Chevron program and Varanasi's Doherty Chair in Ocean Utilization.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>