Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to prevent undersea ice clogs

12.04.2012
Surface coatings developed by MIT researchers could inhibit buildup of methane hydrates that can block deep-sea oil and gas wells

During the massive oil spill from the ruptured Deepwater Horizon well in 2010, it seemed at first like there might be a quick fix: a containment dome lowered onto the broken pipe to capture the flow so it could be pumped to the surface and disposed of properly. But that attempt quickly failed, because the dome almost instantly became clogged with frozen methane hydrate.

Methane hydrates, which can freeze upon contact with cold water in the deep ocean, are a chronic problem for deep-sea oil and gas wells. Sometimes these frozen hydrates form inside the well casing, where they can restrict or even block the flow, at enormous cost to the well operators.

Now researchers at MIT, led by associate professor of mechanical engineering Kripa Varanasi, say they have found a solution, described recently in the journal Physical Chemistry Chemical Physics. The paper's lead author is J. David Smith, a graduate student in mechanical engineering.

The deep sea is becoming "a key source" of new oil and gas wells, Varanasi says, as the world's energy demands continue to increase rapidly. But one of the crucial issues in making these deep wells viable is "flow assurance": finding ways to avoid the buildup of methane hydrates. Presently, this is done primarily through the use of expensive heating systems or chemical additives.

"The oil and gas industries currently spend at least $200 million a year just on chemicals" to prevent such buildups, Varanasi says; industry sources say the total figure for prevention and lost production due to hydrates could be in the billions. His team's new method would instead use passive coatings on the insides of the pipes that are designed to prevent the hydrates from adhering.

These hydrates form a cage-like crystalline structure, called clathrate, in which molecules of methane are trapped in a lattice of water molecules. Although they look like ordinary ice, methane hydrates form only under very high pressure: in deep waters or beneath the seafloor, Smith says. By some estimates, the total amount of methane (the main ingredient of natural gas) contained in the world's seafloor clathrates greatly exceeds the total known reserves of all other fossil fuels combined.

Inside the pipes that carry oil or gas from the depths, methane hydrates can attach to the inner walls — much like plaque building up inside the body's arteries — and, in some cases, eventually block the flow entirely. Blockages can happen without warning, and in severe cases require the blocked section of pipe to be cut out and replaced, resulting in long shutdowns of production. Present prevention efforts include expensive heating or insulation of the pipes or additives such as methanol dumped into the flow of gas or oil. "Methanol is a good inhibitor," Varanasi says, but is "very environmentally unfriendly" if it escapes.

Varanasi's research group began looking into the problem before the Deepwater Horizon spill in the Gulf of Mexico. The group has long focused on ways of preventing the buildup of ordinary ice — such as on airplane wings — and on the creation of superhydrophobic surfaces, which prevent water droplets from adhering to a surface. So Varanasi decided to explore the potential for creating what he calls "hydrate-phobic" surfaces to prevent hydrates from adhering tightly to pipe walls. Because methane hydrates themselves are dangerous, the researchers worked mostly with a model clathrate hydrate system that exhibits similar properties.

The study produced several significant results: First, by using a simple coating, Varanasi and his colleagues were able to reduce hydrate adhesion in the pipe to one-quarter of the amount on untreated surfaces. Second, the test system they devised provides a simple and inexpensive way of searching for even more effective inhibitors. Finally, the researchers also found a strong correlation between the "hydrate-phobic" properties of a surface and its wettability — a measure of how well liquid spreads on the surface.

The basic findings also apply to other adhesive solids, Varanasi says — for example, solder adhering to a circuit board, or calcite deposits inside plumbing lines — so the same testing methods could be used to screen coatings for a wide variety of commercial and industrial processes.

The research team included MIT postdoc Adam Meuler and undergraduate Harrison Bralower; professor of mechanical engineering Gareth McKinley; St. Laurent Professor of Chemical Engineering Robert Cohen; and Siva Subramanian and Rama Venkatesan, two researchers from Chevron Energy Technology Company. The work was funded by the MIT Energy Initiative-Chevron program and Varanasi's Doherty Chair in Ocean Utilization.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>