Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for monitoring volcanoes

12.03.2009
Seventeen of the world's most active volcanoes have been supplied with monitoring equipment from Chalmers University of Technology in Sweden to measure their emission of sulfur dioxide.

The measurement results will be used to make it easier to predict volcano eruptions, and they can also be used to improve today's climate models. One of the Chalmers researchers who developed the monitoring equipment is Mattias Johansson, who recently defended his doctoral dissertation in the subject.

The most active volcanoes in the world have special observatories that monitor them in order to be able to sound the alarm and evacuate people in the vicinity if an eruption threatens. These observatories keep track of several parameters, primarily seismic activity. Now 17 observatories have received a new parameter that facilitates their work - the volcanoes' emissions of sulfur dioxide.

"Increasing gas emissions may indicate that magma is rising inside the volcano," says Mattias Johansson at the Department of Radio and Space Science at Chalmers. "If this information is added to the other parameters, better risk estimates can be made at the observatories."

The equipment he has been working with measures the total amount of gas emitted, whereas most other methods for metering gas can only indicate the gas concentration at a particular point. This is made possible by placing two or more metering instruments in different places around the volcano and then aggregating the information they gather.

Much of the Chalmers researchers' work has involved making the equipment sufficiently automatic, robust, and energy-efficient for use in the inhospitable environment surrounding volcanoes, in poor countries with weak infrastructure.

"I have primarily been working with the software required for processing and presenting the measurement results," says Mattias Johansson. "Among other things, I have created a program that analyzes the data collected, calculates the outward flow of gas, and presents the information as a simple graph on a computer screen that the observatory staff need only glance at to find out how much sulfur dioxide the volcano is emitting at any particular time."

He has also participated in the installation of the equipment on two of the volcanoes, Aetna in Italy and San Cristobal in Nicaragua. In Project Novac, which his research is part of, a total of 20 volcanoes will be provided with monitoring equipment from Chalmers.

It will also be possible to improve global climate models when the Chalmers researchers receive continuous reports about how much sulfur dioxide is emitted by the 20 most active volcanoes.

"Sulfur dioxide is converted in the atmosphere to sulfate particles, and these particles need to be factored into climate models if those models are to be accurate," says Associate Professor Bo Galle, who directed the dissertation. "Volcanoes are an extremely important source of sulfur dioxide. Aetna alone, for instance, releases roughly ten times more sulfur dioxide than all of Sweden does."

The methods that Mattias Johansson has devised can moreover be used to measure the total emissions of air pollutants from an entire city. China has already purchased equipment that they are now using to study the pollution situation in the megacity Beijing.

The dissertation Application of Passive DOAS for Studies of Megacity Air Pollution and Volcanic Gas Emissions was defended on March 5.

For more information, please contact:
Mattias Johansson, Optical Remote Analysis, Department of Radio and Space Science, Chalmers University of Technology
phone: +46 (0)31-772 15 89
mattias.johansson@chalmers.se

Sofie Hebrand | idw
Further information:
http://www.vr.se
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=88868

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>