Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane in coastal seas´ sediments: Are they an additional peril for global climate or in a stable equilibrium

27.07.2010
Research Vessel Maria S. Merian is launching for a research cruise dedicated to potential sources of methane in the Baltic Sea from July 31 to August 22, 2010.

An international group of marine chemists, microbiologists and geologists coordinated by the marine chemist Gregor Rehder from the Leibniz Institute of Baltic Sea Research in Warnemünde will put to sea on board of r/v Maria S. Merian on July 31, 2010. The cruise will focus on methane deposits in sediments of the Baltic Sea.

Methane is a dangerous greenhouse gas and, considering a period of 100 years, it is 23-times more effective than carbon dioxide. Thus, scientists all over the world are searching for current and potential sources of methane. The Merian expedition MSM 16/1 will concentrate on methane emissions from Baltic Sea sediments. Beside the detection of current methane emissions into water and atmosphere, the main issue on the agenda is to investigate potential changes within the methane deposits due to an increase in water temperature and ongoing eutrophication.

The seafloor of the Baltic Sea is an ideal place for methane production. There is a continuous snow of organic matter reaching the floor where its decomposition causes oxygen consumption. In the layered water body of the Baltic Sea, this leads nearly permanently to oxygen deficiency in the bottom water and constant anoxia within the sediments (anaerobic conditions). These are most favourable condi-tions for methane producing bacteria. Mayor parts of their methane production will be stored and accumulated in the sediments. Other bacterial communities, which are specialised in using methane for generating energy, provide a barrier which keeps the methane effectively scavenged in the sediments: On a global scale it is estimated that less than 10 % of the methane produced in the sediments is released from the seafloor.

This bacterially directed interaction between methane production and methane oxidation – well known from anaerobic sediments all over the world – can be studied in the Baltic Sea in an ideal way. The hypothesis: if global warming causes changes in the bacterial interaction leading to an increased release of methane from the seafloor into the water and the atmosphere, a feedback reinforcing the greenhouse effect might be expected.

In the Baltic Sea, numerous methane deposits are already known due to earlier studies. The investigations during the Merian cruise will focus on these regions. By means of a multibeam echosounder detecting gas bubbles within the water column, of various acoustic systems which virtually can look into the sediments and with innovative sensors analysing the methane concentration in the water, key areas within the Arkona, Bornholm, Gothland and Bothnian Basins will be analysed in detail. In parallel, gravity corer and a variety of other coring devices will be deployed, for the purpose of sediment sampling in these regions.

The Merian cruise is part of the international research project Baltic Gas, which is jointly funded by BONUS – the Baltic Organisations Network for Funding Sciences EEIG. It is co-ordinated by the Danish microbiologist Bo Barker Joergensen, Center for Geomicrobiology at the University of Aarhus.

Contact:
Prof. Dr. Gregor Rehder, IOW, +49 381 5197 336, gregor.rehder@io-warnemuende.de
Dr. Barbara Hentzsch, IOW, +49 381 5197 102; barbara.hentzsch@io-warnemuende.de
Partners in Baltic Gas:
Center for Geomicrobiology, Aarhus University, DK; National Environmental Research Institute, Aarhus University, DK; Geological Survey of Denmark and Greenland, DK; Max Planck Institute for Marine Microbiology, DE; Department of Geology, Lund University, SE; Institute of Oceanology, Polish Academy of Science, Sopot, PL; Leibniz Institute for Baltic Sea Research Warnemünde, DE; Winogradsky Institute of Microbiology, Russian Academy of Sciences, RUS; Alfred-Wegener-Institute of Polar and Marine Research, DE; Stockholm University, SE; Department of Earth Sciences, Utrecht University, NL; Department of Earth Sciences, University of Bremen, DE

Dr. Barbara Hentzsch | idw
Further information:
http://www.balticgas.net/
http://www.bonusportal.org
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>