Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane in coastal seas´ sediments: Are they an additional peril for global climate or in a stable equilibrium

27.07.2010
Research Vessel Maria S. Merian is launching for a research cruise dedicated to potential sources of methane in the Baltic Sea from July 31 to August 22, 2010.

An international group of marine chemists, microbiologists and geologists coordinated by the marine chemist Gregor Rehder from the Leibniz Institute of Baltic Sea Research in Warnemünde will put to sea on board of r/v Maria S. Merian on July 31, 2010. The cruise will focus on methane deposits in sediments of the Baltic Sea.

Methane is a dangerous greenhouse gas and, considering a period of 100 years, it is 23-times more effective than carbon dioxide. Thus, scientists all over the world are searching for current and potential sources of methane. The Merian expedition MSM 16/1 will concentrate on methane emissions from Baltic Sea sediments. Beside the detection of current methane emissions into water and atmosphere, the main issue on the agenda is to investigate potential changes within the methane deposits due to an increase in water temperature and ongoing eutrophication.

The seafloor of the Baltic Sea is an ideal place for methane production. There is a continuous snow of organic matter reaching the floor where its decomposition causes oxygen consumption. In the layered water body of the Baltic Sea, this leads nearly permanently to oxygen deficiency in the bottom water and constant anoxia within the sediments (anaerobic conditions). These are most favourable condi-tions for methane producing bacteria. Mayor parts of their methane production will be stored and accumulated in the sediments. Other bacterial communities, which are specialised in using methane for generating energy, provide a barrier which keeps the methane effectively scavenged in the sediments: On a global scale it is estimated that less than 10 % of the methane produced in the sediments is released from the seafloor.

This bacterially directed interaction between methane production and methane oxidation – well known from anaerobic sediments all over the world – can be studied in the Baltic Sea in an ideal way. The hypothesis: if global warming causes changes in the bacterial interaction leading to an increased release of methane from the seafloor into the water and the atmosphere, a feedback reinforcing the greenhouse effect might be expected.

In the Baltic Sea, numerous methane deposits are already known due to earlier studies. The investigations during the Merian cruise will focus on these regions. By means of a multibeam echosounder detecting gas bubbles within the water column, of various acoustic systems which virtually can look into the sediments and with innovative sensors analysing the methane concentration in the water, key areas within the Arkona, Bornholm, Gothland and Bothnian Basins will be analysed in detail. In parallel, gravity corer and a variety of other coring devices will be deployed, for the purpose of sediment sampling in these regions.

The Merian cruise is part of the international research project Baltic Gas, which is jointly funded by BONUS – the Baltic Organisations Network for Funding Sciences EEIG. It is co-ordinated by the Danish microbiologist Bo Barker Joergensen, Center for Geomicrobiology at the University of Aarhus.

Contact:
Prof. Dr. Gregor Rehder, IOW, +49 381 5197 336, gregor.rehder@io-warnemuende.de
Dr. Barbara Hentzsch, IOW, +49 381 5197 102; barbara.hentzsch@io-warnemuende.de
Partners in Baltic Gas:
Center for Geomicrobiology, Aarhus University, DK; National Environmental Research Institute, Aarhus University, DK; Geological Survey of Denmark and Greenland, DK; Max Planck Institute for Marine Microbiology, DE; Department of Geology, Lund University, SE; Institute of Oceanology, Polish Academy of Science, Sopot, PL; Leibniz Institute for Baltic Sea Research Warnemünde, DE; Winogradsky Institute of Microbiology, Russian Academy of Sciences, RUS; Alfred-Wegener-Institute of Polar and Marine Research, DE; Stockholm University, SE; Department of Earth Sciences, Utrecht University, NL; Department of Earth Sciences, University of Bremen, DE

Dr. Barbara Hentzsch | idw
Further information:
http://www.balticgas.net/
http://www.bonusportal.org
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>