Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane in coastal seas´ sediments: Are they an additional peril for global climate or in a stable equilibrium

27.07.2010
Research Vessel Maria S. Merian is launching for a research cruise dedicated to potential sources of methane in the Baltic Sea from July 31 to August 22, 2010.

An international group of marine chemists, microbiologists and geologists coordinated by the marine chemist Gregor Rehder from the Leibniz Institute of Baltic Sea Research in Warnemünde will put to sea on board of r/v Maria S. Merian on July 31, 2010. The cruise will focus on methane deposits in sediments of the Baltic Sea.

Methane is a dangerous greenhouse gas and, considering a period of 100 years, it is 23-times more effective than carbon dioxide. Thus, scientists all over the world are searching for current and potential sources of methane. The Merian expedition MSM 16/1 will concentrate on methane emissions from Baltic Sea sediments. Beside the detection of current methane emissions into water and atmosphere, the main issue on the agenda is to investigate potential changes within the methane deposits due to an increase in water temperature and ongoing eutrophication.

The seafloor of the Baltic Sea is an ideal place for methane production. There is a continuous snow of organic matter reaching the floor where its decomposition causes oxygen consumption. In the layered water body of the Baltic Sea, this leads nearly permanently to oxygen deficiency in the bottom water and constant anoxia within the sediments (anaerobic conditions). These are most favourable condi-tions for methane producing bacteria. Mayor parts of their methane production will be stored and accumulated in the sediments. Other bacterial communities, which are specialised in using methane for generating energy, provide a barrier which keeps the methane effectively scavenged in the sediments: On a global scale it is estimated that less than 10 % of the methane produced in the sediments is released from the seafloor.

This bacterially directed interaction between methane production and methane oxidation – well known from anaerobic sediments all over the world – can be studied in the Baltic Sea in an ideal way. The hypothesis: if global warming causes changes in the bacterial interaction leading to an increased release of methane from the seafloor into the water and the atmosphere, a feedback reinforcing the greenhouse effect might be expected.

In the Baltic Sea, numerous methane deposits are already known due to earlier studies. The investigations during the Merian cruise will focus on these regions. By means of a multibeam echosounder detecting gas bubbles within the water column, of various acoustic systems which virtually can look into the sediments and with innovative sensors analysing the methane concentration in the water, key areas within the Arkona, Bornholm, Gothland and Bothnian Basins will be analysed in detail. In parallel, gravity corer and a variety of other coring devices will be deployed, for the purpose of sediment sampling in these regions.

The Merian cruise is part of the international research project Baltic Gas, which is jointly funded by BONUS – the Baltic Organisations Network for Funding Sciences EEIG. It is co-ordinated by the Danish microbiologist Bo Barker Joergensen, Center for Geomicrobiology at the University of Aarhus.

Contact:
Prof. Dr. Gregor Rehder, IOW, +49 381 5197 336, gregor.rehder@io-warnemuende.de
Dr. Barbara Hentzsch, IOW, +49 381 5197 102; barbara.hentzsch@io-warnemuende.de
Partners in Baltic Gas:
Center for Geomicrobiology, Aarhus University, DK; National Environmental Research Institute, Aarhus University, DK; Geological Survey of Denmark and Greenland, DK; Max Planck Institute for Marine Microbiology, DE; Department of Geology, Lund University, SE; Institute of Oceanology, Polish Academy of Science, Sopot, PL; Leibniz Institute for Baltic Sea Research Warnemünde, DE; Winogradsky Institute of Microbiology, Russian Academy of Sciences, RUS; Alfred-Wegener-Institute of Polar and Marine Research, DE; Stockholm University, SE; Department of Earth Sciences, Utrecht University, NL; Department of Earth Sciences, University of Bremen, DE

Dr. Barbara Hentzsch | idw
Further information:
http://www.balticgas.net/
http://www.bonusportal.org
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>